National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This research explores the development of low-calorie food products utilizing microbial enzyme protease and microalgae Spirulina as functional bioactive ingredients. The focus is on four innovative formulations: peanut butter and fruit custard (developed using protease), and chocolate truffles and dark chocolate (developed using Spirulina powder). These formulations aim to provide nutritionally enhanced alternatives for health-conscious consumers by incorporating protein- digesting enzymes and antioxidant-rich algae into widely loved food matrices. Physical, microbial, and biochemical analyses were conducted to validate the nutritional and sensory quality of the products.
Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Microalgae as a functional ingredient in food products: Physicochemical characterization and applications. Algal Research, 2(2), 164–173. https://doi.org/10.1016/j.algal.2013.01.004
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207– 210. https://doi.org/10.1016/j.biotechadv.2006.11.002
Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation in the food industry. Frontiers in Nutrition, 5, 58. https://doi.org/10.3389/fnut.2018.00058
Chacón?Lee, T. L., & González?Mariño, G. E. (2010). Microalgae as a novel source of bioactive molecules for nutrition and health. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675. https://doi.org/10.1111/j.1541-4337.2010.00132.x
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Freitas, B. C. B., Santos, T. D., Moreira, J. B., Zanfonato, K., Morais, M. G., & Costa, J. A. V. (2019). Development and characterization of food products enriched with Spirulina sp. International Food Research Journal, 26(1), 59–65.
Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Microalgae biotechnology: A sustainable approach for biofuel and food applications. Renewable and Sustainable Energy Reviews, 14(3), 1037–1047. https://doi.org/10.1016/j.rser.2009.11.001
Kim, S. K., & Bhatnagar, I. (2011). Microalgae as a sustainable food and feed source: Applications in health and nutrition. Marine Drugs, 9(10), 1681–1705. https://doi.org/10.3390/md9101681
Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815–820. https://doi.org/10.1021/bp070371k
Patel, A. K., Singhania, R. R., Sim, S. J., & Pandey, A. (2020). Thermochemical and biochemical approaches for microalgal biorefinery. Bioresource Technology, 300, 122724. https://doi.org/10.1016/j.biortech.2019.122724
Rolls, B. J., Laster, L. J., & Summerfelt, A. (1989). Appetite regulation and energy intake in response to high-intensity sweeteners. Appetite, 13(2), 115–127. https://doi.org/10.1016/S0195-6663(89)80006-9
Sandrou, D. K., & Arvanitoyannis, I. S. (2000). Low-fat and low-calorie foods: The role of fat replacers and sugar substitutes. Critical Reviews in Food Science and Nutrition, 40(5), 427–447. https://doi.org/10.1080/10408690091189212.![]() |
![]() |
![]() |
![]() |
![]() |