Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:12, December, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(12): 246-276
DOI: https://doi.org/10.20546/ijcmas.2025.1412.024


Green Synthesis and Characterization of Silver Nanoparticles Using Phyllanthus pinnatus: A Study on Antioxidant and Antimicrobial Activities
Shaheen1 and P. Vijaya2*
1Department of Botany, BESTIU - 515231Andhra Pradesh, India 2Department of Botany, Tara Government College (A), Sanga Reddy - 502001, Telangana, India
*Corresponding author
Abstract:

The green synthesis of silver nanoparticles (AgNPs) using various natural resources is one of the emerging fields of green nanotechnology. Silver nanoparticles (AgNPs) were synthesized through an eco-friendly green route using Phyllanthus pinnatus leaf extract as a natural reducing and stabilizing agent. The formation of AgNPs was confirmed by a characteristic surface plasmon resonance peak at 445 nm. Structural and morphological analyses using FTIR, XRD, SEM, TEM, and zeta potential revealed predominantly spherical, crystalline nanoparticles with an average size of 10–15 nm and moderate colloidal stability. The biosynthesized AgNPs exhibited concentration-dependent antioxidant activity in DPPH and hydrogen peroxide scavenging assays. Significant antibacterial activity was observed against both Gram-positive and Gram-negative pathogens, with inhibition zones surpassing those of the standard antibiotic ampicillin, particularly against Streptococcus pneumoniae and Pseudomonas aeruginosa. Moderate antifungal activity was noted at higher concentrations. Overall, the study demonstrates that P. pinnatus-mediated AgNPs possess promising antioxidant and broad-spectrum antimicrobial properties, highlighting their potential as sustainable nanomaterials for biomedical and pharmaceutical applications.


Keywords: Green synthesis, AgNPs, antioxidant, antimicrobial, Phyllanthus pinnatus & Phyllanthaceae


References:

Ahmed, W., Azmat, R., Mehmood, A., Qayyum, A., Ahmed, R., Khan, S.U., Liaquat, M., Naz, S. and Ahmad, S. (2021). The analysis of new higher operative bioactive compounds and chemical functional group from herbal plants through UF-HPLC-DAD and Fourier transform infrared spectroscopy methods and their biological activity with antioxidant potential process as future green chemical assay. Arabian Journal of Chemistry, 14(2), p.102935.

Akter, M., Sikder, M. T., Rahman, M. M., Ullah, AKMA, Hossain, K. F. B., Banik, S., et al., (2017). A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008.

Al-Otibi, F., Al-Otaibi, W., Alqarni, A., Al-Ghamdi, S., Alshammari, A., & Ansari, M. J. (2021). Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi Journal of Biological Sciences, 28(4), 2229–2235. https://doi.org/10.1016/j.sjbs.2021.01.068

Amargeetha, A., Venkatasubramanian, V., & Vidya, C. (2018). X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers. Nanosci. Technol., 5, 1–5.

Amerikova, M., et al., (2019). Antibacterial and antibiofilm activity of Myrtenol against Staphylococcus aureus. Journal of Applied Microbiology, 127(3), 774–783. https://doi.org/10.1111/jam.14327

Astry M, Patil V, Sainkar SR. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B.; 102(8): 1404–10. https://doi.org/10.1021/jp9719873.

Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials advances, 2(6), 1821-1871.

Barhoum, A., García-Betancourt, M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M.,... & Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12(2), 177.

Bhandari, R., et al., (2023). Preliminary study on the antibacterial activities and phytochemical screening of selected medicinal plants from the Newar community of Nepal. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2023.115000

Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6), 1636-1653.

De, B., & Goswami, T. K. (2022). Nanobiotechnology–a green solution. Biotechnology for zero waste: Emerging waste management techniques, 379-396.

Desai, S., & Taranath, T. C. (2023). Haldina Cordifolia (Roxb.) Ridsdale Bark Derived Synthesis and Characterization of Silver Nanoparticles: Investigation of its Antituberculosis and Anticancer Activity. Advance in Pharmacology and Pharmacy, 11(1), 24-35.

Ebrahimzadeh, M. A., Bahramian, F. (2009). Antioxidant and free radical scavenging activity of Crataegus pentaegyna subsp. elburensis fruits extracts used in traditional medicine in Iran. Pharmacologyonline, 2, 1318–1323.

Eid M M. (2022). Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698 6_89.

El-Refai, A. A., Ghoniem, G. A., El-Khateeb, A. Y., & Hassaan, M. M. (2018). Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry, 8(1), 71-81.

Eshghi, M. Vaghari, H. Najian, Y. Najian, M. Jafarizadeh- Malmiri, H. Berenjian, A. (2018). Microwave-assisted green synthesis of silver nanoparticles using juglans regia leaf extract and evaluation of their physico chemical and antibacterial properties. Antibiotics. vol. 7, no. 3, p. 68.

Gajula, P., Palakurthy, K., & Kusuma, S. (2022). Pharmacognostic studies on leaves of Gymnanthemum amygdalinum with special reference to a new addition to the flora of South India. Indian Drugs, 59(6), 37-46. https://doi.org/10.53879/id.59.06.13008

Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International journal of nanomedicine, 2399-2407.

Gomes, H. I. O., Martins, C. S. M., and Prior, J. A. V. (2021). Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomater. (Basel) 11 (4), 964. https://doi.org/10.3390/nano11040964

Gong, J., & Krishnan, S. (2019). Mathematical modeling of dye-sensitized solar cells. In Dye-Sensitized Solar Cells: Mathematical Modelling, and Materials Design and Optimization (pp. 51-81). Elsevier. https://doi.org/10.1016/B978-0-12-814541-8.00002-1

Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851.

Hussain, A. (2022). Sustainable production of silver nanoparticles from waste part of Litchi chinensis Sonn. and their antibacterial evaluation, Pakistan Journal of Pharmaceutical Sciences, vol. 35, no. 1.

Hyde, M. A., Wursten, B. T., Ballings, P., & Coates Palgrave, M. (2025). Flora of Zimbabwe: Phyllanthus pinnatus (Wight) G.L. Webster. Flora of Zimbabwe. Retrieved.

Jangid, H., Singh, S., Kashyap, P., Singh, A., and Kumar, G. (2024). Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Front. Pharmacol. 15, 1438227. https://doi.org/10.3389/fphar.2024.1438227.

Kamble, S., et al., (2022). Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect, 7(19), e202103084. https://doi.org/10.1002/slct.202103084

Kathireswari, P., Gomathi, S., & Saminathan, K. (2014). Plant leaf mediated synthesis of silver nanoparticles using Phyllanthus niruri and its antimicrobial activity against multi drug resistant human pathogens. Int. J. Curr. Microbiol. Appl. Sci.3, 960.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.

Khare, T., Anand, U., Dey, A., et al., (2018). Phytochemical screening, antioxidant, and antimicrobial activities of selected medicinal plants. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2018.xxxxx

Kibiti CM, Afolayan AJ. (2015). Preliminary Phytochemical Screening and Biological Activities of Bulbine abyssinica Used in the Folk Medicine in the Eastern Cape Province, South Africa. Evid Based Complement Alternat Med, 2015: 617607.

Kumar, B., Kumar, S., & Madhusudanan, P. (2020). Phytochemistry of plants of genus Phyllanthus. Taylor & Francis.

Kumari, S., & Sarkar, L. (2021). A review on nanoparticles: structure, classification, synthesis & applications. Journal of Scientific Research, 65(8), 42-46.

Le Ouay, B. and F. Stellacci, (2015). Antibacterial activity of silver nanoparticles: a surface science insight, Nano Today, vol. 10, no. 3, pp. 339–354.

Mahire, S. P., & Patel, S. N. (2020). Extraction of phytochemicals and study of its antimicrobial and antioxidant activity of Helicteres isora L. International Journal of Multicultural and Multireligious Understanding, 7(10), 68-80.

Malhotra, S. P. K., & Alghuthaymi, M. A. (2022). Biomolecule-assisted biogenic synthesis of metallic nanoparticles. Agri-waste and microbes for production of sustainable nanomaterials, 139-163.

Mao, X., Wu, L. F., Guo, H. L., Chen, W. J., Cui, Y. P., Qi, Q., Kang, H., & Wang, X. (2016). The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review. Evidence-Based Complementary and Alternative Medicine, 2016, 1–34

Mao, X., Wu, L. F., Guo, H. L., Chen, W. J., Cui, Y. P., Qi, Q., Kang, H., & Wang, X. (2015). The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review

Mazhir, S. N., Ali, I. A. M., Al-Ahmed, H. I., Bououdina, M., & Ali, F. A. M. (2020). Dependence of O. Vulgare extract and cold plasma on the formation of silver nanoparticles: Anticancer activity against L20B cells. In AIP Conference Proceedings (Vol. 2213, No. 1, p. 020149). AIP Publishing LLC.

Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S., & Collins, J. J. (2013). Silver enhances antibiotic activity against gram-negative bacteria. Science translational medicine, 5(190), 190ra81-190ra81.

Nair AS, Vinila VS, Issac S, Jacob R, Mony A, Nair HG, Rajan S.(2014). Studies on nano crystalline ceramic superconductor LaZrYBaCa2Cu3O11 at three different temperatures. Chem Mater Sci 4(2): 126–133.

Nanomaterials. (2023). Advances in phytonanotechnology: A plant-mediated green synthesis of metal nanoparticles using Phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials, 13(19), 2616.

Nanomaterials. (2024). Silver nanoparticles: Synthesis, structure, properties and applications. Nanomaterials, 14(17), 1425.

Ninan, N., Goswami, N., & Vasilev, K. (2020). The impact of engineered silver nanomaterials on the immune system. Nanomaterials, 10(5), 967.

Nisar, M. F., He, J., Ahmed, A., Yang, Y., Wan, C. C., & Ma, L. (2018). Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature. Molecules, 23(10), 2567.

Pakkirisamy, M Suresh Kumar Kalakandan and Karthikeyen Ravichandran. (2017). Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Turmeric). Phcogj.Com, 9(6):952-956.

Pal S, Tak YK, Song JM. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720.

Patel, J. R., Tripathi, P., Sharma, V., Chauhan, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. Journal of Ethnopharmacology, 138(2), 286–313.

Raaman, N. (2006). Phytochemical techniques. New India Publishing Agency.

Rai, M. Deshmukh, S. D. Ingle, A. P. Gupta, I. R. Galdiero, M. and Galdiero, S. (2016). Metal nanoparticles: the protective nanoshield against virus infection, Critical Reviews in Microbiology, vol. 42, no. 1, pp. 46 56.

Rolim, W. R. Pelegrino, M. T. and de Araújo Lima, B. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity, Applied Surface Science, vol. 463, pp. 66–74.

Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1984). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 5(12), 1661–1664. https://doi.org/10.1093/carcin/5.12.1661.

Sabouri, Z., Fereydouni, N., Akbari, A., Hosseini, H. A., Hashemzadeh, A., Amiri, M. S., ... & Darroudi, M. (2020). Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Metals, 39(10), 1134-1144.

Sabouri, Z., Sabouri, M., Amiri, M. S., Khatami, M., & Darroudi, M. (2022). Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology, 37(8), 555-568.

Sabouri, Z., Sabouri, S., Tabrizi Hafez Moghaddas, S. S., Mostafapour, A., Amiri, M. S., & Darroudi, M. (2022). Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity. Bioprocess and Biosystems Engineering, 45(11), 1799-1809.

Saif, H. (2022). Handbook of Biotechnology.

Saini, S., Dhiman, A., Nanda, S., & Dhiman, S. (2022). Phytochemical composition and therapeutic applications of Phyllanthus emblica: A review. Frontiers in Pharmacology, 14, 1288618.

Samuel, M. S., Ravikumar, M., John J, A., Selvarajan, E., Patel, H., Chander, P. S., ... & Chandrasekar, N. (2022). A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 12(5), 459.

Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D. S., & Saratale, G. D. (2018). Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial cells, nanomedicine, and biotechnology, 46(1), 211-222.

Sarin, B., Verma, N., Martín, J. P., & Mohanty, A. (2014). An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future prospects. The Scientific World Journal, (1), 839172.

Selina Wamucii. (2023). Phyllanthus pinnatus (Wight) G.L. Webster.

Selvan, D. A. Mahendiran, D. Kumar, R. S. Rahiman, A. K. (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, vol. 180, pp. 243– 252.

Shreyash, N., Bajpai, S., Khan, M. A., Vijay, Y., Tiwary, S. K., & Sonker, M. (2021). Green synthesis of nanoparticles and their biomedical applications: a review. ACS Applied Nano Materials, 4(11), 11428-11457.

Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 16(1), 84.

Singh, K., Panghal, M., Kadyan, S., Chaudhary, U., & Yadav, J. P. (2014). Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. Journal of nanobiotechnology, 12(1), 40.

Singh, L. Kruger, H. G. Maguire, G. E. Govender, T and Parboosing, R. (2019), Development and evaluation of peptide functionalized gold nanoparticles for HIV integrase inhibition, International Journal of Peptide Research and Therapeutics, vol. 25, no. 1, pp. 311–322.

Singh, S., Numan, A., & Cinti, S. (2022). Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Analytical chemistry, 94(1), 26–40. https://doi.org/10.1021/acs.analchem.1c03856.

Sirelkhatim, A. Mahmud, S. and Seeni, A. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism, Nano-Micro Letters, vol. 7, no. 3, pp. 219–242.

Straková, P., Larmola, T., Andrés, J., Ilola, N., Launiainen, P., Edwards, K., Minkkinen, K., & Laiho, R. (2020). Quantification of Plant Root Species Composition in Peatlands Using FTIR Spectroscopy. Frontiers in Plant Science, 11, 597.

Sumaiya Naeema Hawar,Zainab K. Taha, Atyaf Saied Hamied, Hanady S. Al-Shmgani, Ghassan M. Sulaiman,and Sobhy E. Elsilk.. (2023). Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. International Journal of Biomaterials PB - Hindawi. 1687-8787 https://doi.org/10.1155/2023/2411555.

Tan, M. A., Sharma, N., & An, S. S. A. (2020). Phyllanthus acidus (L.) Skeels: A review of its biological activities and phytochemistry. Journal of Ethnopharmacology, 263, 113181. 716

Tulli, F., Cisneros, A. B., Gallucci, M. N., Turbay, M. B. E., Rey, V., & Borsarelli, C. D. (2022). Synthesis, properties, and uses of silver nanoparticles obtained from leaf extracts. In Green Synthesis of Silver Nanomaterials. Elsevier. pp. 317-357.

Vanden Bout DA. (2002). Metal nanoparticles:  synthesis, characterization, and applications. In:  Feldheim DL, Foss CA Jr., editors. New York: Marcel Dekker, c.x + 338 pp. $150.00. ISBN:  0-8247-0604-8. J Am Chem Soc 124:7874–75. https://doi.org/10.1504/IJNT.2011.038201

Von White, G., Kerscher, P., Brown, R. M., Morella, J. D., McAllister, W., Dean, D., & Kitchens, C. L. (2012). Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. Journal of nanomaterials, 2012(1), 730746.

Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., and Xie, H. (2020). Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10 (20), 8996–9031. https://doi.org/10.7150/thno.45413

Xu, M., Han, X., Xiong, H., Gao, Y., Xu, B., Zhu, G., et al., (2023). Cancer nanomedicine: emerging strategies and therapeutic potentials. Molecules. 28 (13), 5145. https://doi.org/10.3390/molecules28135145

Yousaf, S., Chopra, H., Khan, M. A., Mustafa, F., Kamal, M. A., & Baig, A. A. (2022). Nanotechnology and its applications: insight into bacteriological interactions and bacterial gene transfer. In Nanotechnology for Biomedical Applications (pp. 479-497). Singapore: Springer Singapore.

Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M., and Inkielewicz-Stepniak, I. (2017). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget. 9 (4), 4675–4697. https://doi.org/10.18632/oncotarget.22563


Download this article as Download

How to cite this article:

Shaheen and Vijaya P. 2025. Green Synthesis and Characterization of Silver Nanoparticles Using Phyllanthus pinnatus: A Study on Antioxidant and Antimicrobial Activities.Int.J.Curr.Microbiol.App.Sci. 14(12): 246-276. doi: https://doi.org/10.20546/ijcmas.2025.1412.024
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations