Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:7, July, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(7): 72-79
DOI: https://doi.org/10.20546/ijcmas.2025.1407.009


Bioaccumulation and Biosorption of Mercury using Indigenous Bacteria from Industrial Effluent
Shilpa Hosmani* and Gayathri Devaraja
Department of Studies in Microbiology, Davangere University, Shivagangothri, Davangere-577007, Karnataka- State, India
*Corresponding author
Abstract:

Heavy metal pollution in soils is a significant global environmental issue due to the toxic effects of metals and their accumulation in the food chain. Increased industrial activities have elevated heavy metal levels, necessitating effective remediation methods. Biosorption is an efficient, cost-effective, and eco-friendly technique for addressing heavy metal contamination. This study focused on the biosorption of Hg (Mercury) using bacterial isolates from polluted soils. Biosorption rates were determined using atomic absorption spectrophotometry. Isolated cultures were incubated Luria Bertani media with varying metal concentrations for 5 days. SG 2 (BRucella anthropi), SG 10 (Bacillus pumilis), and SG 14 (Staphylococcus edaphicus) showed the highest biosorption rates of 97.59%, 97.58% and 97.62% for Hg. These results indicate the potential of BRucella anthropi, Bacillus pumilis, and Staphylococcus edaphicus for biosorbing Hg, highlighting their usefulness in remediating contaminated soils.


Keywords: Biosorption, Bioaccumulation, Hg, Spectrophotometer, 16S rRNA sequencing


References:

Akkoyun, M. B., Özdemir, S., K?l?nç, E., & Birhanl?, E. (2020). Investigations of Hg (II) and Pb (II) tolerance, removal and bioaccumulation and their effects on antioxidant enzymes on thermophilic Exiguobacterium profundum. Human and Ecological Risk Assessment: An International Journal, 26(5), 1234-1253. http://doi.org/10.1080/10807039.2018.1562882

Aryal, M. (2021). A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. Reviews in Chemical Engineering, 37(6), 715-754. https://doi.org/10.1515/revce-2019-0016

Baek, K., & Jeon, C. O. (2015). Rheinheimera aestuari sp. nov., a marine bacterium isolated from coastal sediment. International Journal of Systematic and Evolutionary Microbiology, 65(8), 2640–2645.           https://doi.org/10.1099/ijs.0.000312

Bidlas, E., Du, T., & Lambert, R. J. (2008). An explanation for the effect of inoculum size on MIC and the growth/no growth interface. International journal of food microbiology, 126(1-2), 140-152. https://doi.org/10.1016/j.ijfoodmicro.2008.05.023

Choi, A., Wang, S., & Lee, M. (2009). Biosorption of cadmium, copper, and lead ions from aqueous solution by Ralstonia sp. and Bacillus sp. isolated from diesel? and heavy?metal?contaminated soil. Geosciences Journal, 13(4), 331–341. https://doi.org/10.1007/s12303-009-0031-3

Çolak, F., Atar, N., Yaz?c?o?lu, D., & Olgun, A. (2011). Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173(2), 422-428. http://dx.doi.org/10.1016/j.cej.2011.07.084

Das, M. P., & Kumari, N. (2016). A microbial bioremediation approach: removal of heavy metal using isolated bacterial strains from industrial effluent disposal site. International Journal of Pharmaceutical Sciences Review and Research, 38(1), 111-114.

Das, S., & Choudhury, S. S. (2016). Analysis of heavy metals from water, sediment, and tissues of Labeoangra (Hamilton, 1822), from an Ox-box lake-an wetland site from Assam, India. Journal of Environmental Science and Health, Part A, 51(1), 21-33 https://doi.org/10.1080/10934529.2015.1079102

De, J., Dash, H. R., & Das, S. (2014). Mercury pollution and bioremediation—a case study on biosorption by a mercury-resistant marine bacterium. In Microbial biodegradation and bioremediation (pp. 137-166). Elsevier. http://dx.doi.org/10.1016/B978-0-12-800021-2.00006-6

Ferrari, V. C., & Hollibaugh, J. T. (1999). Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set. Molecular Ecology of Aquatic Communities, 55-68. https://doi.org/10.1023/A:1003773907789

François, F., Lombard, C., Guigner, J. M., Soreau, P., Brian-Jaisson, F., Martino, G.,... & Rebuffat, S. (2012). Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Applied and environmental microbiology, 78(4), 1097-1106. https://doi.org/10.1128/aem.06522-11

Kam-Sing Wong, S. (2014). Impacts of environmental turbulence on entrepreneurial orientation and new product success. European Journal of Innovation Management, 17(2), 229-249. http://dx.doi.org/10.1108/EJIM-04-2013-0032

Ma, C., White, J. C., Dhankher, O. P., & Xing, B. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental science & technology, 49(12), 7109-7122. https://doi.org/10.1021/acs.est.5b00685

Morosanu, I., Teodosiu, C., P?duraru, C., Ib?nescu, D., & Tofan, L. (2017). Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnology, 39, 110–124.            https://doi.org/10.1016/j.nbt.2016.08.002

Nwagwu, S. N., Kuyoro, E. O., Agboola, D. M., Salau, K. S., & Kuyoro, T. O. (2016, February). Pollution of Nigerian Aquatic Ecosystems by Industrial Effluents: Effects on Fish Productivity. In American Geophysical Union, Ocean Sciences Meeting (Vol. 2016, pp. CT44B-0238).

Oyewole, O. A., Zobeashia, S. S. L. T., Oladoja, E. O., Raji, R. O., Odiniya, E. E., & Musa, A. M. (2019). Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Applied Sciences, 1, 1-8. https://doi.org/10.1007/s42452-019-0879-4

Rahman, Z., Thomas, L., & Singh, V. P. (2019). Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB?2. Journal of basic microbiology, 59(5), 477-486.    https://doi.org/10.1002/jobm.201900024

Rehman, A., Ali, A., Muneer, B., & Shakoori, A. R. (2007). Resistance and biosorption of mercury by bacteria isolated from industrial effluents. Pakistan Journal of Zoology, 39(3), 137.

Ren, J., Li, N., Li, L., An, J. K., Zhao, L., & Ren, N. Q. (2015). Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresource technology, 178, 119-125.   https://doi.org/10.1016/j.biortech.2014.09.071

Sambrook, J., Fritsch, E.F., Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York 1989.

Swamy, C. T., Gayathri, D., Devaraja, T. N., Bandekar, M., D'Souza, S. E., Meena, R. M., & Ramaiah, N. (2016). Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae. Journal of basic microbiology, 56(12), 1369-1379. https://doi.org/10.1002/jobm.201600197

Ta?ar, ?., Kaya, F., & Özer, A. (2014). Biosorption of lead (II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2(2), 1018-1026. https://doi.org/10.1016/j.jece.2014.03.015

Yao, H., Wang, H., Ji, J., Tan, A., Song, Y., & Chen, Z. (2023). Isolation and identification of mercury?tolerant bacteria LBA119 from molybdenum–lead mining soils and their removal of Hg²?. Toxics, 11(3), 261. https://doi.org/10.3390/toxics11030261   


Download this article as Download

How to cite this article:

Shilpa Hosmani and Gayathri Devaraja. 2025. Bioaccumulation and Biosorption of Mercury using Indigenous Bacteria from Industrial Effluent.Int.J.Curr.Microbiol.App.Sci. 14(7): 72-79. doi: https://doi.org/10.20546/ijcmas.2025.1407.009
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations