![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
An experiment was conducted using a randomized block design (RBD) with three replications during the Rabi season of 2020-21 at the Instructional Farm, RCA, MPUAT, Udaipur. The genetic diversity of ten bread wheat (Triticum aestivum L. em. Thell) genotypes was assessed using Simple Sequence Repeat (SSR) DNA markers along with fifteen morpho-physiological traits. A total of ten SSR primers were used, all of which produced polymorphic amplification, generating a total of 64 polymorphic bands. The polymorphism information content (PIC) values for the polymorphic primers ranged from 0.39 (GWM 160) to 0.92 (XGWM 132). The number of alleles per locus varied from 1 (GWM 160 and GWM 165) to a maximum of 4 (WMS 5, XGWM 484, and XGWM 132). A positive correlation was observed between the PIC value and the variation in the repeat motif for each SSR marker. The broader repeat motif ranges of WMS 5 {(TC)n(T)n(GT)n(GA)n} and XGWM 132 {(GA)n(GAA)n} contributed to their higher allelic diversity, each detecting four alleles. Cluster analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) grouped the ten wheat genotypes into two major clusters, which were further divided into four sub-clusters based on similarity coefficient values.
Amiteye, S. 2021. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7: 1-20. https://doi.org/10.1016/j.heliyon.2021.e08093
Ammar, M.K, Hanafi, R.S., Choucry M.A., Handoussa, H. 2023. Structural, functional, nutritional composition and analytical profiling of Triticum aestivum L. Applied Biological Chemistry, 66: 48 (2023). https://doi.org/10.1186/s13765-023-00804-3
Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. and Sorrells, M. E. 1993. Optimization parental selection for genetic linkage maps. Genome, 36: 181-186. https://doi.org/10.1139/g93-024
Annual Report of IIW & BR, 2022
Anonymous. 2022. Progress report of All India Co-Ordinate Wheat and Barley Improvement Project 2021-22. Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. pp-227.
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
Gupta, P. K., Balyan, H. S., Sharma, P. C. and Ramesh, B. 1996. Microsatellites in plants: a new class of molecular markers. Current Science, 70: 45-54.
Herrera, T. G., Duque, D. P., Almeida, I. P., Nunez, G. T., Pieters, A. J., Martinez, C. P. and Tohme, J. M. 2008. Assessment on genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Electronic Journal of Biotechnology, 11: 215-226.
Ijaz, S. and Khan, I. A. 2009. Molecular characterization of wheat germplasm using microsatellite markers. Genetics and Molecular Research, 8: 809-815. https://doi.org/10.4238/vol8-3gmr608
Islam, S., Haque, M. S., Emon, R. M., Islam, S. S. and Begum, S. N. 2012. Molecular characterization of wheat (Triticum aestivum L.) genotypes through SSR markers. Bangladesh Journal of Agricultural Research, 37: 389-398. https://doi.org/10.3329/bjar.v37i3.12082
Jaccard, P. 1908. “Nouvelles research sur la distribution florale”. Bulletin Society Vaud Science National, 44: 223-270. http://dx.doi.org/10.5169/seals-268384
Kara, K., Kanouni, M. R., Mnasri, S., Khammar, H. and Naceur, M. B. 2020. Genetic variability assessment in bread wheat (Triticum aestivum) grown in Algeria using microsatellites SSR markers. Biodiversitas, 21: 2638-2644. https://doi.org/10.13057/biodiv/d210635
Kumar, P., Yadava, R. K., Kumar, S. and Kumar, P, 2016. Molecular diversity analysis in wheat genotypes using SSR markers. Electronic Journal of Plant Breeding, 7: 464-468. http://dx.doi.org/10.5958/0975-928X.2016.00060.0
Mwale, V. M., Tang, X. and Chilembwe, E. 2016. Assessment of genetic diversity among sixty bread wheat (Triticum aestivum) cultivars using microsatellite markers. African Journal of Biotechnology, 15: 960-973. https://doi.org/10.5897/AJB2015.15185
Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Dogan, Y., Comertpay, G., Yildiz, M., Hatipoglu, R., Ahmad, F., Alsaleh, A., Labhane, N., Ozkan, H., Chung, G., Baloch, F.S. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32: 261-285. https://doi.org/10.1080/13102818.2017.1400401
Parker, G. D., Fox, P. N., Langridge, P., Chalmers, K., Whan, B. and Ganter, P. F. 2002. Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica, 124: 293-306.
Salem, K. F. M., El-Zanaty, A. M. and Esmail, R. M. 2008. Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World Journal of Agricultural Sciences, 4: 538-544.
Sharma, I., Shoran, J., Singh, G. and Tyagi, B. S. 2011. Wheat Improvement in India. Souvenir of 50th All India Wheat and Barley Research workers' Meet, New Delhi, pp. 11.
Singh, S.K. Kumar, S. Kashyap, P.L. Sendhil, R. Gupta, O.P. 2023. Wheat. In: Ghosh, P.K., Das, A., Saxena, R., Banerjee, K., Kar, G., Vijay, D. (eds). Trajectory of 75 years of Indian Agriculture after Independence. Springer, Singapore.
Swarup, S., Cargill, E.J., Crosby, K., Flagel, L., Kniskern, J., Glenn, KC. 2021. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61: 839-852. https://doi.org/10.1002/csc2.20377
Tautz, D. and Renz, M. 1989. Hyper variability of simple sequences as general source of polymorphic DNA markers. Nucleic Acids Research, 17: 6463-6471. https://doi.org/10.1093/nar/17.16.6463
Zheng, M., Ding, H. and Xiao, Z. 2009. Analysis of genetic diversity among Heilongjiang spring wheat cultivars in recent decades based on SSR markers. Journal of Triticeae Crops, 29: 409-143.
![]() |
![]() |
![]() |
![]() |
![]() |