National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
In recent ages, green nanotechnology has gained attraction in the synthesis of metallic nanoparticles due to their cost-effectiveness, simple preparation steps, and environmentally- friendly. In the present study, copper oxide nanoparticles (CuO NPs) were prepared using Nigella sativa leaf extract as a reducing, stabilizing, and capping agent. Bioactive copper nanomaterials are an emerging class of nano-antimicrobials providing complimentary effects and characteristics, as compared to other nano-sized copper oxide metal. The CuO NPs were characterized via UV–Vis Spectroscopy. The UV–Vis spectra of CuO NPs showed a surface plasmonic resonance band to occur at 851 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus Cereus, Bacillus Substillus), and Gram-negative bacteria (Pseudomonas Aureginosa, Salmonella Typhimurium, Enterobacter Aerogenus). According to the results of this investigation, green synthesized CuO NPs with Nigella sativa leaf extract may be used in biomedicine as a replacement agent for biological applications.
Abboud Y, Saffaj T, Chagraoui A, Bouari E K, Tanane and Ihssane O. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata) Appl Nanosci. 1, 2013. http://dx.doi.org/10.1007/s13204-013-0233-x
Alphandery E. Applications of magnetosomes synthesised by magnetotactic bacteria in medicine. Front bioeng biotechnol, 2014. https://doi.org/10.3389/fbioe.2014.00005
Ananda Murthy H. C. et al., 2020., Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties., Hindawi Journal of Nanomaterials Volume 2020, Article ID 3924081, 12 pages. https://doi.org/10.1155/2020/3924081
Bukhari S I, Hamed M M, Al-agamy M H and Youssif A M. Biosynthesis of copper oxide nanoparticles using Streptomyces MHM32 and its biological applications. Journal of nanomat 2021.
Chanda N, Shukla R and Zambre A. An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm Res 28: 279-291, 2011. https://doi.org/10.1007/s11095-010-0276-6
Das R K, Borthakur B B and Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters 64: 1445-7, 2010. https://doi.org/10.1016/j.matlet.2010.03.051
Garc?a-Serna J, Perez-Barrigon L and Cocero M J. New trends for design towards sustainability in chemical engineering: Green engineering Chemical Engineering Journal 133: 7-30, 2007. https://doi.org/10.1016/j.cej.2007.02.028
Gnanamanickam S S. Biological control of crop diseases. Marcel Dekker Inc., New York, USA, 468, 2002
Harborne J B. Phytochemical Method: A guide to Modern Techniques of Plants Analysis. 2nd Edn. Chapman and Hall New York. 1983.
Hasan S S, Singh S and Shouche Y. Bacterial synthesis of copper/ copper oxide nanoparticles. J. nanosci nanotech 8:3191- 6, 2008. https://doi.org/10.1166/jnn.2008.095
Honary S, Barabadi H, Gharaei-Fathabad E and Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomat Biostruct 7: 999-1005, 2012.
Huang C Y and Sheen S R. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape, Materials Letters 30: 357-361, 1997. https://doi.org/10.1016/s0167-577x(96)00224-8
Huang Z, Jiang X, Guo D and Gu N. Controllable synthesis and biomedical applications of silver nanomaterials. J Nanosci Nanotechnol. 11: 9395-9408, 2011. http://dx.doi.org/10.1166/jnn.2011.5317
Joerger R, Klaus T and Granqvist C G. Biologically produced silver carbon composite materials for optically functional thin-film coatings. Adv Materials 12: 407-409, 2000. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6%3C407::AID-ADMA407%3E3.0.CO;2-O
Ling-Y C, Feng-X S and Xia G (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus (L.) Merr. Journal of Medicinal Plants Research Vol. 5(17), pp. 4059-4064.
Misiak, M. and Lodyga-Chruscinska, E., 2010., Interactions of Flavonoids with Transition Metal Ions, PharmaChem 2010 Vol.9 No.11/12 pp.39-42 ref.48.
Mohanpuria P, Rana N K and Yadav S K. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10, 507– 517, 2008. https://doi.org/10.1007/s11051-007-9275-x
Mukherjee S, Patra C R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 8: 12444-12470, 2016. https://doi.org/10.1039/C5NR07887C
Nilanjana D, Purba M, Ajoy K G (2013). Pharmacognostic and Phytochemical Evaluation of the Rhizomes of Curcuma longa Linn. Journal of PharmaSciTech, 2(2):81- 86.
Olesja B, Katre J, Angela I, Kaja K, Monika M and Anne K. Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells In Vitro: A Critical Review. Arch Toxicol 87: 1181-1200, 2013. https://doi.org/10.1007/s00204-013-1079-4
Phongpaichit S., Nikom J., Rungjindamai N., Sakayaroj J., Hutadilok-Towatana N., Rukachaisirikul V., and Kirtikara K., Biological activities of extracts from endophytic fungi isolated fromGarciniaplants, FEMS Immunology and Medical Microbiology. (2007) 51, no. 3, 517–525, https://doi.org/10.1111/j.1574-695X.2007.00331.x,2-s2.0-35948941587.
Prema P. Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application, Analysis and Modeling to Technol. Applications, 151-166, 2010.
Quinteros M A, Martinez I M A and Paez P L. Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J biomat 2016. https://doi.org/10.1155/2016/5971047
Richard Feynman R.P. There’s plenty of room at the bottom. Eng. Sci. 1960;23:22–36.
Ruparelia J P, Chatterjee A K, Duttagupta S P and Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4: 707- 716, 2008. https://doi.org/10.1016/j.actbio.2007.11.006
Sastry M, Ahmad A, Khan M I and Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycetes. Current Sci 85: 162-170, 2003.
Sawant R. S. and A. G. Godghate (2013). Qualitative phytochemical screening of rhizomes of Curcuma longa linn. International Journal of Science, Environment, and Technology, Vol. 2, No 4, 634 – 641.
Sleyter U B, Schuster B, Egelseer E M and Pum D. S-layers: principle and applications. FEMS microbiology reviews. 38: 823- 864, 2014. https://doi.org/10.1111/1574-6976.12063
Taniguchi N. On the basic concept of ‘nano-technology’. Proceedings of the international conference on production engineering Tokyo, Part II; Tokyo: Japan Soc Precision Engineerin 18-23, 1974.
Thakkar K N, Snehit M S, Mhatre S and Parikh R Y. Biological synthesis of metallic nanoparticles. Nanomedicine, Nanotechnology, Biology, and Medicine, 6: 257-262, 2010. https://doi.org/10.1016/j.nano.2009.07.002
![]() |
![]() |
![]() |
![]() |
![]() |