Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:8, August, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(8): 244-260
DOI: https://doi.org/10.20546/ijcmas.2024.1308.030


Green synthesis, UV characterization and antibacterial activity of copper nanoparticles derived from Nigella sativa
N. Ashwak, J. Prakash, K. Tamilarasan and N. V. Swathi*
Department of Microbiology, Ranipettai Arts and Science Management College, Thenkadapanthangal, Ranipet District, Tamilnadu, India
*Corresponding author
Abstract:

In recent ages, green nanotechnology has gained attraction in the synthesis of metallic nanoparticles due to their cost-effectiveness, simple preparation steps, and environmentally- friendly. In the present study, copper oxide nanoparticles (CuO NPs) were prepared using Nigella sativa leaf extract as a reducing, stabilizing, and capping agent. Bioactive copper nanomaterials are an emerging class of nano-antimicrobials providing complimentary effects and characteristics, as compared to other nano-sized copper oxide metal. The CuO NPs were characterized via UV–Vis Spectroscopy. The UV–Vis spectra of CuO NPs showed a surface plasmonic resonance band to occur at 851 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus Cereus, Bacillus Substillus), and Gram-negative bacteria (Pseudomonas Aureginosa, Salmonella Typhimurium, Enterobacter Aerogenus). According to the results of this investigation, green synthesized CuO NPs with Nigella sativa leaf extract may be used in biomedicine as a replacement agent for biological applications.


Keywords: Copper Nanoparticles, UV –Visible Spectrophotometry, Characterization, Antibacterial activity, Nigella sativa


References:

Abboud Y, Saffaj T, Chagraoui A, Bouari E K, Tanane and Ihssane O. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata) Appl Nanosci. 1, 2013. http://dx.doi.org/10.1007/s13204-013-0233-x

Alphandery E. Applications of magnetosomes synthesised by magnetotactic bacteria in medicine. Front bioeng biotechnol, 2014. https://doi.org/10.3389/fbioe.2014.00005

Ananda Murthy H. C. et al., 2020., Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties., Hindawi Journal of Nanomaterials Volume 2020, Article ID 3924081, 12 pages. https://doi.org/10.1155/2020/3924081

Bukhari S I, Hamed M M, Al-agamy M H and Youssif A M. Biosynthesis of copper oxide nanoparticles using Streptomyces MHM32 and its biological applications. Journal of nanomat 2021.

Chanda N, Shukla R and Zambre A. An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm Res 28: 279-291, 2011. https://doi.org/10.1007/s11095-010-0276-6

Das R K, Borthakur B B and Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters 64: 1445-7, 2010. https://doi.org/10.1016/j.matlet.2010.03.051

Garc?a-Serna J, Perez-Barrigon L and Cocero M J. New trends for design towards sustainability in chemical engineering: Green engineering Chemical Engineering Journal 133: 7-30, 2007. https://doi.org/10.1016/j.cej.2007.02.028

Gnanamanickam S S. Biological control of crop diseases. Marcel Dekker Inc., New York, USA, 468, 2002

Harborne J B. Phytochemical Method: A guide to Modern Techniques of Plants Analysis. 2nd Edn. Chapman and Hall New York. 1983.

Hasan S S, Singh S and Shouche Y. Bacterial synthesis of copper/ copper oxide nanoparticles. J. nanosci nanotech 8:3191- 6, 2008. https://doi.org/10.1166/jnn.2008.095

Honary S, Barabadi H, Gharaei-Fathabad E and Naghibi F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomat Biostruct 7: 999-1005, 2012.

Huang C Y and Sheen S R. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape, Materials Letters 30: 357-361, 1997. https://doi.org/10.1016/s0167-577x(96)00224-8

Huang Z, Jiang X, Guo D and Gu N. Controllable synthesis and biomedical applications of silver nanomaterials. J Nanosci Nanotechnol. 11: 9395-9408, 2011. http://dx.doi.org/10.1166/jnn.2011.5317

Joerger R, Klaus T and Granqvist C G. Biologically produced silver carbon composite materials for optically functional thin-film coatings. Adv Materials 12: 407-409, 2000. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6%3C407::AID-ADMA407%3E3.0.CO;2-O

Ling-Y C, Feng-X S and Xia G (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus (L.) Merr. Journal of Medicinal Plants Research Vol. 5(17), pp. 4059-4064.

Misiak, M. and Lodyga-Chruscinska, E., 2010., Interactions of Flavonoids with Transition Metal Ions, PharmaChem 2010 Vol.9 No.11/12 pp.39-42 ref.48.

Mohanpuria P, Rana N K and Yadav S K. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10, 507– 517, 2008. https://doi.org/10.1007/s11051-007-9275-x

Mukherjee S, Patra C R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 8: 12444-12470, 2016. https://doi.org/10.1039/C5NR07887C

Nilanjana D, Purba M, Ajoy K G (2013). Pharmacognostic and Phytochemical Evaluation of the Rhizomes of Curcuma longa Linn. Journal of PharmaSciTech, 2(2):81- 86.

Olesja B, Katre J, Angela I, Kaja K, Monika M and Anne K. Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells In Vitro: A Critical Review. Arch Toxicol 87: 1181-1200, 2013. https://doi.org/10.1007/s00204-013-1079-4

Phongpaichit S., Nikom J., Rungjindamai N., Sakayaroj J., Hutadilok-Towatana N., Rukachaisirikul V., and Kirtikara K., Biological activities of extracts from endophytic fungi isolated fromGarciniaplants, FEMS Immunology and Medical Microbiology. (2007) 51, no. 3, 517–525, https://doi.org/10.1111/j.1574-695X.2007.00331.x,2-s2.0-35948941587.

Prema P. Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application, Analysis and Modeling to Technol. Applications, 151-166, 2010.

Quinteros M A, Martinez I M A and Paez P L. Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J biomat 2016. https://doi.org/10.1155/2016/5971047

Richard Feynman R.P. There’s plenty of room at the bottom. Eng. Sci. 1960;23:22–36.

Ruparelia J P, Chatterjee A K, Duttagupta S P and Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4: 707- 716, 2008. https://doi.org/10.1016/j.actbio.2007.11.006

Sastry M, Ahmad A, Khan M I and Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycetes. Current Sci 85: 162-170, 2003.

Sawant R. S. and A. G. Godghate (2013). Qualitative phytochemical screening of rhizomes of Curcuma longa linn. International Journal of Science, Environment, and Technology, Vol. 2, No 4, 634 – 641.

Sleyter U B, Schuster B, Egelseer E M and Pum D. S-layers: principle and applications. FEMS microbiology reviews. 38: 823- 864, 2014. https://doi.org/10.1111/1574-6976.12063

Taniguchi N. On the basic concept of ‘nano-technology’. Proceedings of the international conference on production engineering Tokyo, Part II; Tokyo: Japan Soc Precision Engineerin 18-23, 1974.

Thakkar K N, Snehit M S, Mhatre S and Parikh R Y. Biological synthesis of metallic nanoparticles. Nanomedicine, Nanotechnology, Biology, and Medicine, 6: 257-262, 2010. https://doi.org/10.1016/j.nano.2009.07.002


Download this article as Download

How to cite this article:

Ashwak, N., J.Prakash,  K.Tamilarasan and  N.V.Swathi. 2024. Green synthesis, UV characterization and antibacterial activity of copper nanoparticles derived from Nigella sativa.Int.J.Curr.Microbiol.App.Sci. 13(8): 244-260. doi: https://doi.org/10.20546/ijcmas.2024.1308.030
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations