![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Bacillus thuringiensis (Bt) is a main producer of insecticidal proteins but it has also a good potential to produce antibacterial proteins like bacteriocins. In this study, the bacteriocin production potential of native Bt strains in our collection were investigated. The antimicrobial activity of 100 Bt strains were screened by agar spot assay and 17 of them with clear inhibition zones were further analysed by well diffusion assay. Among them, Bt-28Q1 strain resulted in a highest inhibition zone against Bacillus cereus. The antimicrobial substance was detected at the highest level at the beginning of logarithmic phase in the growth curve. Its production was at the maximum level in Tryptic soy broth (TSB) compared to other medium. The antimicrobial substance was heat-stable, pH-stable (range 5-9), and proteinase K sensitive, similar to bacteriocins. This bacteriocin was partially purified with ammonium sulfate precipitation and its molecular weight was determined as around 12 kDa via SDS-PAGE and gel overlay assays. Bacteriocin showed antimicrobial activity to most of the Bacillus species and anticancer activity against human cancer cell lines A549 and HT-29. Sequence analysis of 16S rDNA and flagellin hag genes of the Bt 28Q1 strain identified it as Bacillus thuringiensis subsp. tochigiensis. These findings indicate that bacteriocin from Bt-28Q1 has potency for being used as bioactive molecule to prevent the growth of food spoilage bacteria and for development of a new anticancer agent.
Barboza-Corona, J. E., Vázquez-Acosta, H., Bideshi, D. K., Salcedo-Hernández, R. (2007). Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol. 187: 117–126. https://doi.org/10.1007/s00203-006-0178-5
Bizani, D. and Brandelli, A. (2002). Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J Appl Microbiol. 93: 512–9. https://doi.org/10.1046/j.1365-2672.2002.01720.x
Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol. 13: 224-30. https://doi.org/10.1016/j.cbpa.2009.02.037
Cesa-Luna, C., Alatorre-Cruz, J. M., Carreño-López, R., Quintero-Hernández, V., Baez, A. (2021). Emerging applications of bacteriocins as antimicrobials, anticancer drugs, and modulators of the gastrointestinal microbiota. Pol J Microbiol. 70: 143–159. https://doi.org/10.33073/PJM-2021-020
Cladera-Olivera, F., Caron, G. R., Brandelli, A. (2004). Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett Appl Microbiol. 38: 251–256. https://doi.org/10.1111/j.1472-765X.2004.01478.x
Coates, A., Hu, Y., Bax, R., Page, C. (2002). The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 1: 895-910. https://doi.org/10.1038/nrd940
Compaoré, C. S., Nielsen, D. S., Ouoba, L. I. I., Berner, T. S., Nielsen, K. F., Sawadogo-Lingani, H., Diawara, B., Ouédraogo, G. A., Jakobsen, M., Thorsen, L. (2013). Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int J Food Microbiol. 162: 297–307. https://doi.org/10.1016/j.ijfoodmicro.2013.01.013
Çon, A. H. and Gökalp, H. Y. (2000). Production of bacteriocin-like metabolites by lactic acid cultures isolated from sucuk samples. Meat Sci. 55: 89–96. https://doi.org/10.1016/s0309-1740(99)00129-1
De la Fuente-Salcido, N. M., Casados-Vázquez L. E., Barboza-Corona J. E. (2013). Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can J Microbiol. 59: 515–22. https://doi.org/10.1139/cjm-2013-0284.
Dobrzy?ska, I., Szachowicz-Petelska, B., Sulkowski, S., Figaszewski, Z. (2005). Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem. 276: 113-9. https://doi.org/10.1007/s11010-005-3557-3.
Gharsallaoui, A., Oulahal, N., Joly, C., Degraeve, P. (2016). Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev Food Sci Nutr. 56: 1262–1274. https://doi.org/10.1080/10408398.2013.763765
Hancock, R. E. and Chapple, D. S. (1999). Peptide Antibiotics. Antimicrob Agents Chemother. 43: 1317-23. https://doi.org/10.1128/AAC.43.6.1317.
Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol. 113: 723-36. https://doi.org/10.1111/j.1365-2672.2012.05338.x
Hoskin D. W. and Ramamoorthy A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta. 1778: 357–375. https://doi.org/10.1016/j.bbamem.2007.11.008.
Ivanova, I., Miteva, V., Stefanova, T., Pantev, A., Budakov, I., Danova, S., Moncheva, P., Nikolova, I., Dousset, X., Boyaval, P. (1998). Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol. 42: 147-58. https://doi.org/10.1016/s0168-1605(98)00067-1.
Izquierdo, E., Bednarczyk, A., Schaeffer, C., Cai, Y., Marchioni, E., Van Dorsselaer, A., Ennahar, S. (2008). Production of enterocins L50A, L50B, and IT, a new enterocin, by Enterococcus faecium IT62, a strain isolated from Italian ryegrass in Japan. Antimicrob Agents Chemother. 52: 1917–1923. https://doi.org/10.1128/AAC.01409-07
Jack, R. W., Tagg, J. R., Ray, B. (1995). Bacteriocins of Gram-Positive Bacteria. Microbiol Rev. 59: 171-200. https://doi.org/10.1128/mr.59.2.171-200.1995.
Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog. 128: 171-177. https://doi.org/10.1016/j.micpath.2019.01.002
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680–5. https://doi.org/10.1038/227680a0.
León-Galván, M. F., Carbajal, N., Frickey, T., Santos, L. (2009). Microbial identification of the nichupte-Bojorquez coastal lagoon in cancun, mexico. Aquat Ecol. 43: 197–205. https://doi.org/10.1007/s10452-008-9171-1
Lewus, C. B. and Montville, T. J. (1991). Detection of Bacteriocins Produced by Lactic Acid Bacteria. J Microbiol Methods. 13: 145-150. https://doi.org/10.1016/0167-7012(91)90014-H
Lopez de la Cruz, D., Valencia-Castro, C. M., Hernández-Terán, F., Barboza-Corona, J. E., de la Fuente-Salcido, N. M. V. (2018). Antibacterial Activity of Native Bacillus thuringiensis Strains from Fernandez Canyon State Park, Mexico. J Antimicrob Agents. 4: 166-171. https://doi.org/10.4172/2472-1212.1000166
Maróti Gergely, G., Kereszt, A., Kondorosi, É., Mergaert, P. (2011). Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 162: 363–374. https://doi.org/10.1016/j.resmic.2011.02.005
Oscáriz, J. C. and Pisabarro, A. G. (2000). Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol. 89: 361-9. https://doi.org/10.1046/j.1365-2672.2000.01123.x.
Paik, H. D., Bae, S. S., Park, S. H., Pan, J. G. (1997). Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis, J Ind Microbiol Biotechnol. 19: 294-8. https://doi.org/10.1038/sj.jim.2900462.
Rattanachaikunsopon, P. and Phumkhachorn, P. (2006). Isolation and Preliminary Characterization of a Bacteriocin Produced by Lactobacillus plantarum N014 Isolated from Nham, a Traditional Thai Fermented Pork. J Food Prot. 69: 1937-43. https://doi.org/10.4315/0362-028x-69.8.1937.
Rogers, A. M. and Montville, T. J. (1991). Improved agar diffusion assay for nisin quantification. Food Biotechnol. 5: 161–168. https://doi.org/10.1080/08905439109549799
Salazar-Marroquín, E. L., Galán-Wong, L. J., Moreno-Medina, V. R., Reyes-López, M. Á., Pereyra-Alférez, B. (2016). Bacteriocins synthesized by Bacillus thuringiensis: Generalities and potential applications. Rev Med Microbiol. 27: 95–101. https://doi.org/10.1097/MRM.0000000000000076
Sand, S. L., Nissen-Meyer, J., Sand, O., Haug, T. M. (2013). Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta Biomembr. 1828: 249–259. https://doi.org/10.1016/j.bbamem.2012.11.001
Sumi, C. D., Yang, B. W., Yeo, I. C., Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can J Microbiol. 61: 93–103. https://doi.org/10.1139/cjm-2014-0613
Xie, J., Zhang, R., Shang, C., Guo, Y. (2009). Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol. 8: 5611–5619. https://doi.org/10.4314/ajb.v8i20.66016![]() |
![]() |
![]() |
![]() |
![]() |