Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:7, July, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(7): 74-85
DOI: https://doi.org/10.20546/ijcmas.2024.1307.009


Anti-quorum Sensing, Oxidative Stress and Anti-Biofilm Inducing Abilities of Vitamin K3 Analogues Against Chronic Respiratory Infection of Mucoid Variants Pseudomonas aeruginosa Strain PAO1
Rohan Chippalkatti1, 3, Kirti Badave2, 4, Ayesha Alim Khan1, 2* and Sandhya Rane2
1Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune – 411007, India
2Department of Chemistry, Savitribai Phule Pune University, Pune -411007, India
3Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
4Regional Forensic Science Laboratory, Home Department Maharashtra State - 411007, India
*Corresponding author
Abstract:

Almost all antibiotics target either bacterial function or biofilms but do not consider the damage due to host responses, thus, even if the bacteria are eliminated, the tissue damage cannot be prevented. The mucoid phenotype and oxidative stress severely limit the efficacy of current therapeutics for chronic respiratory infections (CRI) of Pseudomonas aeruginosa in cystic fibrosis (CF) patients. In the present study, we examined the activity of a novel set of VitaminK3 derivatives on biofilms of the mucoid variants of P.aeruginosa. Acyl-homoserine lactones (AHLs) an important signaling molecules in the quorum sensing gene regulatory processes found in numerous gram-negative species of bacteria were evaluated. Further, the radical scavenging ability and antibiofilm activities were studied. The compounds were also screened for cytotoxic activity by the MTT assay on HeLa cell lines. This work highlights the aggravation of the CF lung caused due to biofilm formation, and exacerbation occurring due to oxidative stress, which is a host response. This study thus presents VitaminK3 derivatives as antimicrobial compounds which also prevent oxidative stress and thus serve a dual function. Consequently, further development and use of these compounds is likely to complement current CF therapeutics.


Keywords: Biofilms, extracellular DNA, mucoid phenotypes, mucoid conversion, MIC


References:

Aaron S D, Ferris W, Ramotar K, Vandemheen K, Chan F, et al., (2002) Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J ClinMicrobiol40, 4172–4179. https://doi.org/10.1128/JCM.40.11.4172-4179.2002

Adonizio, A L. (2008). Anti-Quorum Sensing Agents from South Florida Medicinal Plants and their Attenuation of Pseudomonas aeruginosa Pathogenicity. FIU Electronic Theses and Dissertations. https://doi.org/10.25148/etd.FI08081501

Allesen-Holm M, Barken K B, Yang L, Klausen M, Webb J S, et al., (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. MolMicrobiol 59, 1114–1128. https://doi.org/10.1111/j.1365-2958.2005.05008.x

Asfour H Z. (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct ;6:1-10. https://doi.org/10.4103/JMAU.JMAU_10_18

Bauer, A.W., et al. (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496.

Bhirud R G and Srivastava T S. (1990). Monomeric and dimeric mixed-lignad copper(II) complexes of 2,2’-bipyridine/1,10-phenanthroline and 1-methylimidazole with imidazoles as catalysts for superoxide dismutation. J. Inorg. Biochem. 40, 331-338.

Ceri H, Olson M E, Stremick C, Read R R, Morck D, et al., (1999) The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J ClinMicrobiol 37, 1771–1776. https://doi.org/10.1128/JCM.37.6.1771-1776.1999

Das, T, Sharma P K, Busscher H J, Van der Mei H C and Krom B P. (2010). Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation.Appl. Environ. Microbiol. 76, 3405-3408. https://doi.org/10.1128/AEM.03119-09

Davis P B O. (1993). Pathophysiology of the lung disease in cystic fibrosis. In: Davis PB, ed. Cystic Fibrosis. New York, Marcell Dekker Inc, pp. 193-218.

Dosanjh, A. (2008). The inhibition of Superoxide Production by the Soluble Phase of Cystic Fibrosis Sputum. The open respiratory medicine journal. 2, 80-83. https://doi.org/10.2174/1874306400802010080

Eberhard, A., and J. B. Schineller. 2000. Chemical synthesis of bacterial autoinducers and analogs. Methods Enzymol. 305:310-315.

European Society of Clinical microbiobiology and infectious diseases, CMI, 9, 1-7, 2003.

Finkel S E and Kolter R. (2001). DNA as a Nutrient: Novel Role for bacterial Competence Gene Homologs. J. Bacteriol. 183, 6288-6293. https://doi.org/10.1128/JB.183.21.6288-6293.2001.

Fuji N, Yamashita Y, Arima Y et al., (1992). Induction of topoisomerase-II mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob.Agents.Chemother. 36, 2589-94. https://doi.org/10.1128/AAC.36.12.2589.

Hoffman, N. (2007). Animal models of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. Drug discovery today: Disease models. 4, 99-104. https://doi.org/10.1016/j.ddmod.2007.11.008

Hoiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O et al., (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microb. Infect. 3, 1-13. https://doi.org/10.1016/S1286-4579(00)01349-6

Kolpen M, Hansen C R, Bjarnsholt T, Moser C, Christensen L D, et al., (2010). Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax.65, 57-62. https://doi.org/10.1136/thx.2009.114512  

Kumar L, Patel S K S, Kharga K, Kumar R, Kumar P, Pandohee J, Kulshresha S, Harjai K, Chhibber S. Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules. 2022 Nov 4;27(21):7584. https://doi.org/10.3390/molecules27217584

Lakshmi V V and Christopher M T (1996). Curing of F-like plasmid TP181 by plumbagin is due to interference with both replication and maintenance functions. Microbiol.142, 2399-2406. https://doi.org/10.1099/00221287-142-9-2399

Leichtzin N, John M, Irizarri R, Merlo C, Diette G B and Boyle M P. (2006). Outcomes of adults with cystic fibrosis infected with antibiotic-resistant Pseudomonas aeruginosa. Respiration.73, 27-33. https://doi.org/10.1159/000087686

Makemson J, Eberhard A, Mathee K. Simple electrospray mass spectrometry detection of acylhomoserine lactones. Luminescence. 2006;21:1–6. https://doi.org/10.1002/bio.873

Mathee, K, Ciofu O, Sternberg C, Lindum P W, Campbell J I, Jensen P et al., (1999). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiol145, 1349-1357. https://doi.org/10.1099/13500872-145-6-1349

McGrath L T, Patrick R, Mallon P, Dowey L, Silke B, Norwood W and Elborne S. (2000). Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur. Respir. J. 16, 1065-1069. https://doi.org/10.1034/j.1399-3003.2000.16f08.x

Merlo, C A, Boyle M P, Diener-West M, Marshall B C, Goss C H and Lechtzin N. (2007). Incidence and risk factors for multiple antibiotic-resistant Pseudomonas aeruginosa in cystic fibrosis. Chest. 132, 562-568. https://doi.org/10.1378/chest.06-2888

Molobela P I, Cloete T E and Beukes M. (2010). Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr. J. Microbiol. Res. 4, 1515-1524.

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immune.Met. 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4

Nickel J C, Ruseska I, Wright J B, Costerton J W (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27, 619–624. https://doi.org/10.1128/AAC.27.4.619

Pitts B, Hamilton M A, Zelver N and Stewart P S. (2003). A microtitre plate screening method for biofilms disinfection and removal. Microbiol.Met. 54, 269-276. https://doi.org/10.1016/s0167-7012(03)00034-4

Ratjen F, Munck A, Kho P and Angyalosi G. (2010). Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax.65, 286-91. https://doi.org/10.1136/thx.2009.121657

Riera E. Macia M D, Mena A, Mulet X, Perez J L, GE Y and Oliver A. (2010). Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosastrain PAO1. J. Antimicrob. Chemother.65, 1399-1404. https://doi.org/10.1093/jac/dkq143

Salh B, Webb K, Guyan P M, Day J P, Wickens D, et al., (1989). Aberrant free radical activity in cystic fibrosis.Clin.Chim.Acta. 181, 65-74. https://doi.org/10.1016/0009-8981(89)90318-5

Tacetti G, Campana S, Festini F, Mascherini M and Doring G. (2005). Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients. Eur. Respir. J. 26, 458-461. https://doi.org/10.1183/09031936.05.00009605

Walker T S, Tomlin K L, Worthen G S, Poch K R, Lieber J G, et al., (2005). Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils. Infection and Immunity. 73, 3693-3701. https://doi.org/10.1128/IAI.73.6.3693-3701.2005

Whitchurch, C B, Tolker-Nielsen T, Ragas P C and Mattick J S. (2002). Extracellular DNA Required for Bacterial Biofilm Formation.Science.295, 1487. https://doi.org/10.1126/science.295.5559.1487


Download this article as Download

How to cite this article:

Rohan Chippalkatti, Kirti Badave, Ayesha Alim Khan and Sandhya Rane. 2024. Anti-quorum Sensing, Oxidative Stress and Anti-Biofilm Inducing Abilities of Vitamin K3 Analogues Against Chronic Respiratory Infection of Mucoid Variants Pseudomonas aeruginosa Strain PAO1.Int.J.Curr.Microbiol.App.Sci. 13(7): 74-85. doi: https://doi.org/10.20546/ijcmas.2024.1307.009
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations