Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:6, June, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(6): 252-259
DOI: https://doi.org/10.20546/ijcmas.2024.1306.027


Invitro Evaluation of Trichoderma Strains Against Pyricularia oryzae, the Causal Agent of Rice Blast Disease
L. Tshilenge-Lukanda1, 2*, A. Ngombo-Nzokwani1, J. Mukendi3, M. Muengula-Manyi1, 4, J. Mudibu2, 5 and A. Kalonji-Mbuyi1, 2
1Plant Pathology unit, Faculty of Agronomy, University of Kinshasa, P. O. Box 117, Kinshasa XI, DR-Congo
2Department of Genetics and Plant Breeding, Regional Nuclear Energy Center, Kinshasa (CRENK), P. O. Box 868, DR-Congo
3Plant Clinic of Kinshasa, 8842 Wangata street, Kinshasa, DR- Congo4Direction General, INERA-DG, Kinshasa, DR- Congo
*Corresponding author
Abstract:

Phytopthogen are simply an organism parasitic on a plant host resulting the serious problems regarding crop losses in agriculture sector. To facing such a threat, it is very wise to use Biological Control Agents (BCA’s) like Trichoderma, a soil-borne filamentous fungus that are capable of parasitizing several plant pathogenic fungi. It is a potential fungal BCA’s against a range of plant pest and pathogens. Unfortunately, popularization of bio-pesticides is very slow as compared to chemicals. In this study, Pyricularia oryzae was isolated from diseased plant parts using tissue culture techniques. Thereafter, antagonistics properties of two T-strains coded as Ts7B1 and Ts8O were evaluated against P.oryzae isolate tested in vitro study using dual culture technique. In dual culture techniques it is found that Ts7B1 has maximum mycelial growth inhibition and sporulation of pathogen (as much as 60 and 69% respectively) whereas Ts8O has lowest effect on it (35 and 55.2%). Present study concludes the uses of Trichoderma and assessment of their suitability as bio-pesticides for control of P.oryzae, the causal agent of blast rice disease.


Keywords:

Inhibition, Mycelial growth, Trichoderma strains, Pyricularia oryzae, biocontrol



References:

Abdu, S., Nonglak, P., Prapa Sripichitt and Sreewongchai, T (2013). Identification of blast-resistant varieties from landrace, improved and wild species of rice. Thailand. Kasetsart J. (Nat. Sci.) 47: 1 – 7.

Abdullah, M T, N Y Ali, P Suleman (2008). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloquefaciens. Crop Prot 27:1354?1359 https://doi.org/10.1016/j.cropro.2008.05.007

Alaya Ben Salem S; Haouala R; Jabnoun-Khiareddine H Et Daami-Remadi M. (2013). Evaluation de l’activité antifongique de Trichoderma spp., Gliocladium spp. et Aspergillus spp. contre Rhizoctonia solani par double culture et test de leurs filtrats de culture. Microbiol. Hyg. Alim. Vol.25, N°73-juillet 2013.

Barakat. R. M, Al-Mahareeq. F, Ali-Shtayeh. M. S et al.,-Masri. M., (2007). Biological control of Rhizoctonia solani by indigenous Trichoderma spp. isolates from Palestine, H U Res J, Vol 3, pp: 1-15.

Bonman, J. M. (1992). Durable resistance to rice blast disease-Environmental Influences. Euphtica 63:115-123. https://doi.org/10.1007/BF00023917

Deepti Srivastava, Md. Shamim, Deepak Kumar, Pramila Pandey, N. A. Khan and K. N. Singh (2014). Morphological and Molecular Characterization of Pyricularia Oryzae Causing Blast Disease in Rice (Oryza Sativa) from North India. International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014.

Dennis, C. and Webster, J. (1971). Antagonist properties of species group of Trichoderma II. production of volatile antibiotics. Transactions of British Mycological Society 57: 41 – 48. https://doi.org/10.1016/S0007-1536(71)80078-5

Gupta K J, Mur L A J, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant-Microbe Interact 2014;27:307- 314. https://doi.org/10.1094/MPMI-06-13-0160-R 

Harman, G. E. 1996. Trichoderma for Biocontrol of commercialization Products. In: Comell Community Conference on Biological Control.

Hidayah, B N., Khangura, R and Dell, B. (2022). Biological Control Potential of Trichoderma Species and Bacterial Antagonists against Sclerotinia sclerotiorum on Canola in Western Australia. International Journal of Agriculture & Biology, 27 (3),215-227. https://doi.org/10.17957/IJAB/15.1919

Hu X, D P Roberts, L Xie, L Qin, Y Li, X Liao, P Han, C Yu, X Liao (2019). Seed treatment containing Bacillus subtilis BY-2 in combination with other Bacillus isolates for control of Sclerotinia sclerotiorum on oilseed rape. Biol Cont 133:50?57 https://doi.org/10.1016/j.biocontrol.2019.03.006

Inoue A ; Tamogami S ; Kato H ; Nakazato Y ; Akiyama M ; Kodama O ; Akatsuka T and Hashidoko Y. (1995). Antifungal melampolides from leaf extracts of Smallanthus sonchifolius. Phytochemestry, 1995, 39 (4), 845-848. https://doi.org/10.1016/0031-9422(95)00023-Z

Kariaga, M G; Wakhungu, J and Hassan K. Were. Identification of Rice Blast (Pyricularia oryzae Cav.) Races from Kenyan Rice Growing Regions Using Culture and Classical Charaterization. Journal of Research in Agriculture and Animal Science Volume 4, Issue 4 (2016) pp: 16-24.

Macena A M F, N N Kobori, G M Mascarin, J B Vida, G L Hartman (2020). Antagonism of Trichoderma-based biofungicides against Brazilian and North American isolates of Sclerotinia sclerotiorum and growth promotion of soybean. BioControl 65:235?246. https://doi.org/10.1007/s10526-019-09976-8

Matroudi S and M Zamani (2009). Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egypt J Biol 11:37?44 https://doi.org/10.4314/ejb.v11i1.56560

Mebratu G. A; Thangavel S* and Getaneh W. (2015). Assessment of disease intensity and isolates characterization of blast disease (Pyricularia oryzae CAV.) from South West of Ethiopia.Int. J. of Life Sciences, 2015, Vol. 3(4): 271-286.

Minagrider. (2016). Stratégie nationale de développement des semences de riz (SNDSR). Ministère de l’Agriculture, Pêche et Elevage de la République Démocratique du Congo.

Muhammad M; Roswanira A.W; Fahrul H; Mohd H.R; Syariffah Nuratiqah S Y and Hwee Li Teo (2022). An overview of the potential role of microbial metabolites as greener fungicides for future sustainable plant diseases management. J. Crop Prot. 2022, 11 (1): 1-27.

Ojaghian M R (2011). Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39:185?193 https://doi.org/10.1007/s12600-011-0153-9

Ou S H (1985). Rice Diseases. CAB International Mycological, Institute Kew, Survey, UK.

Saharan G S, N Mehta (2008). Sclerotinia Diseases of Crop Plants: Biology, Ecology, and Disease Management. Springer Science + Business Media B.V., Berlin, Germany. https://doi.org/10.1007/978-1-4020-8408-9

Seema, M and Devaki. N. S. (2012). In vitro evaluation of biological control agents against Rhizoctonia solani. Journal of Agricultural Technology 8(1): 233-240.

Serghat, S; Mouria, A; Ouazzani, A; Badoc, A and Douira A. (2004). Effet de quelques fongicides sur le développement in vitro de Pyricularia grisea et Helminthosporium oryzae. Bull. Soc. Pharm. Bordeaux, 2004, 143, 7-18.

Sharma M, A Tarafdar, R Ghosh R, S Gopalakrishanan (2017). Biological control as a tool for eco-friendly management of plant pathogens. In: Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, Vol 4. Adhya T, B Mishra, K Annapurna, DVerma, UKumar(eds.). Springer, Singapore https://doi.org/10.1007/978-981-10-7380-9_8

Simonetti E, A I Hernandez, N L Kerber, N L Pucheu, MA Carmona, A F Garcia (2012). Protection of canola (Brassica napus) against fungal pathogens by strains of biocontrol rhizobacteria. Biocontr Sci Technol 22:111?115. https://doi.org/10.1080/09583157.2011.641519

Villaverde, J. J; Sandrin-Espana, P; Sevilla-Moran, B; Lopez-Goti, C (2016). Biopesticides from Natural Products: Current Development, Legislative Framework, and Future Trends. Bioressources, 11(2), 5618-5640.

Vincent C, M S Goettel, G Lazarovits (2007). Biological control: a global perspective. CABI, Wallingford, England. https://doi.org/10.1079/9781845932657.0001

Zeigler, R. S. and Correa, F. J. 2000. Applying Magnaporthe grisea population analyses for durable rice blast resistance. 2000. APSnet Features. https://doi.org/10.1094/APSnetFeature-2000-0700A


Download this article as Download

How to cite this article:

Tshilenge-Lukanda, L., A. Ngombo-Nzokwani, J. Mukendi, M. Muengula-Manyi, J. Mudibu and Kalonji-Mbuyi, A. 2024. In vitro Evaluation of Trichoderma Strains Against Pyricularia oryzae, the Causal Agent of Rice Blast Disease.Int.J.Curr.Microbiol.App.Sci. 13(6): 252-259. doi: https://doi.org/10.20546/ijcmas.2024.1306.027
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations