Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:6, June, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(6): 164-176
DOI: https://doi.org/10.20546/ijcmas.2024.1306.018


Growth and Germination of Barley Seedlings (Hordeum vulgare) using local Freshwater Algae
Melanie McCullen, Sadiqul Awal* and Andrew Christie
Bachelor of Agriculture and Technology, Department of Arts, Education & AgriTech Melbourne Polytechnic, Crn Dalton rd & Cooper st Epping VIC 3076 Australia
*Corresponding author
Abstract:

While it is true that chemical fertilizers are effective when it comes to increasing production and compensating for a lack of resources, they do result in soil, water, and biological resource depletion and destruction, and the search for alternatives is a considerable focus of much research around the globe. It has become increasingly important to explore the use of beneficial biological organisms, including microbes (which microalgae are generally accepted as being classified as) in industrial agriculture as agents that may assist with fertilization, since they can also contribute to sustainable crop production and potential improvements in food safety. In this study, the potential for freshwater microalgae to act as biofertilizers was explored with a view to improving yield quality and productivity whilst minimizing environmental pollution. The purpose of this study was to determine whether freshwater algae (Pseudo coccomyxa sp and Chlorella sp) could be used to increase barley (Hordeum vulgare) seed germination rates and plant growth through the process of biofertilization. A comparison of barley seed growth with algae applied as a fertilizer before sowing was conducted in three control vessels and three treatment vessels. Weekly monitoring and watering schedules were followed while the barley germinated and grew. There was a significant difference in height, root length, and fresh and dry root, leaf, and stem weights between the experimental and control plants. After six weeks, barley seedlings treated with freshwater algae grew the fastest and gained the most weight. Treatment plants averaged 48 cm in length, while control plants averaged 37 cm. As a result of the treatment, the total fresh weights of the plants were heavier (0.37g) than those of the control plants. In addition, microalgae treated soil retained essential nutrients even after plants were removed at the end of the experiment.


Keywords: Human populations, agricultural sectors, nitrogen, phosphorus, potassium


References:

Adam, D. (2021). How far will the global population rise? Researchers can’t agree. Nature, 597(7877): 462-465. https://doi.org/10.1038/d41586-021-02522-6

Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M.; Gardner, R. D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. (2021). Algal Res. 54, 102200. https://doi.org/10.1016/j.algal.2021.102200

Ammar, E and Shershaby, N. (2022). Algae as bio-fertilisers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5): 3083-3096. https://doi.org/10.1016/j.sjbs.2022.03.020

Australian Export Grains Innovation Centre (AEGIC). (2022). Barley.  

Awad, A., Odat, N., Abu-Romman, S., Hasan, M., Al-Tawaha, A. R. (2021). Effect of Salinity on Germination and Root Growth of Jordanian Barley. Journal of Ecological Engineering, 22(1): 41-50. https://doi.org/10.12911/22998993/128875

Azimi. S. M, Farnia. A, Shaban. M and Lak. M. (2015). Effect of different biofertilizers on seedyield of barley (Hurdeom vulgar L.), Bahman cultivar. International Jounral of Advanced Biological and Biomedical Research. pp. 538-546.  

Bar?óg, P., Grzebisz, W. and ?ukowiak, R. (2022). Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants, 11, 1855. https://doi.org/10.3390/plants11141855

Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., et al., (2018a). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 30, 1061– 1072. https://doi.org/10.1007/s10811-017-1283-3 

Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A. R., Giuffrida, F., and Baglieri, A. (2018b). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1518-y.   

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., Dar, S. A. (2020). Concerns and Threats of Contamination on Aquatic Ecosystems. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_1

Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., Sims, R. (2019). The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability. 11:su11010222. https://doi.org/10.3390/su11010222  

Castro-Camba, R., Sánchez, C., Vidal, N., and Vielba., J. M. (2022). Plant Development and Crop Yield: The Role of Gibberellins. Plants, 11(19), 2650; https://doi.org/10.3390/plants11192650

Chaudhary P, Singh S, Chaudhary A, Sharma A and Kumar G. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 13:930340. https://doi.org/10.3389/fpls.2022.930340

Cope, J. E., Norton, G. J., George, T. S. and Newton, A. C. (2022). Evaluating Variation in Germination and Growth of Landraces of Barley (Hordeum vulgare L.) Under Salinity Stress. Front. Plant Sci. 13:863069. https://doi.org/10.3389/fpls.2022.863069

Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M. and Klein, A. (2022). Biofertilizer: The Future of Food Security and Food Safety. Microorganisms, 10:1220. https://doi.org/10.3390/microorganisms1006122 

Dasgupta, D., Kumar, K., Miglani, R., Mishra, R, Panda, A. K. and Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. In Recent Advancement in Microbial Biotechnology Agricultural and Industrial Approach (Mandal, S. D and Passari A. K. editors). Academic Press. https://doi.org/10.1016/B978-0-12-822098-6.00001-X

Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T. and Stanca, A. M. (1998). Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur J Agron 9:11–20. https://doi.org/10.1016/S1161-0301(98)00019-7  

DESA U N. (2015). World population Prospects: The 2015 revision, Key Findings and Advance Tables. Working Paper No ESA/P?WP. 241, United Nations, Department of Economic and Social Affairs, Population Division, New York, NY.  

Desikachary, T. V. (1959). Cyanophyta. Indian Council of Agricultural Research, New Delhi Publisher: Indian Council of Agricultural Research, New Delhi.

Dineshkumar, R., Kumaravel, R., Gopalsamy, J, Sikder, M. N. A. and Sampathkumar, P. (2018). Microalgae as Bio-fertilizers for Rice Growth and Seed Yield Productivity. Waste Biomass Valorization. 9:793-800. https://doi.org/10.1007?s12649-017-9873-5.   

El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., et al., (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J. Appl. Phycol. 30, 2929–2941. https://doi.org/10.1007/s10811-017-1382-1.   

Faheed, F. A., and Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolomic aspects of lettuce plant. J. Agric. Soc. Sci. 4, 165–169.  

FAO. (2016). The state of food and agriculture, climate change, agriculture and food security. The Food and Agriculture Organization of the United Nations, Rome.  

FAO. (2017). The future of food and agriculture trends and challenges. The Food and Agriculture Organization of the United Nations, Rome.  

Ferreira. A., Bastos C. R V, Marques-dos-Santos C, Acie´ n-Fernandez F G and Gouveia L (2023) Algaeculture for agriculture: from past to future. Front. Agron. 5:1064041. https://doi.org/10.3389/fagro.2023.1064041

Galieni, A., Falcinelli, B., Stagnari, F., Datti, A., and Benincasa, P. (2020). Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. https://doi.org/10.3390/agronomy10091424

Garcia-Gonzalez, J. and Sommerfeld, M. (2016). Biofertilizer and bio stimulant properties of the microalga Acutodesmus dimorphus. J Applied Phycology. 28: 1051–1061. https://doi.org/10.1007/s10811-015-0625-2  

Gaur, V. (2010). Biofertilizer - Necessity for Sustainability,” J. Adv. Dev., vol. 1, pp. 7–8. 

Goel, A. K., Laura, R. D. S., Anuradha, P. G. and Goel, A. (1999). Use of biofertilizers: potential, constraints and future strategies review,” Int. J. Trop. Agric., vol. 17, pp. 1–8.

Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth. (2023). Sustainability, 15, 12413. https://doi.org/10.3390/su151612413

Hegde, D. M., Dwivedi, B. S. and Babu, S. N. S. (1999). Bio-fertilizers for cereal production in India,” Ind. J. Agric. Sci., vol. 69, pp. 73–83.

Ibáñez, A., Garrido-Chamorro, S., Vasco-Cárdenas, M. F., Barreiro, C. (2023). From Lab to Field: Biofertilizers in the 21st Century. Horticulturae, 9, 1306. https://doi.org/10.3390/horticulturae9121306 

Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I. and Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. Front. Sustain. Food Syst. 4:619676. https://doi.org/10.3389/fsufs.2020.619676

Kebede, A., Kang, M. S., Endashaw Bekele, E. (2019). Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in Agronomy, Volume 156, 2019, Pages 265-314  https://doi.org/10.1016/bs.agron.2019.01.008

Khan, M. I., Shin, J. H., and Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17:36. https://doi.org/10.1186/s12934-018-0879-x

Kumar, S., Diksha, Sindhu, S. S. Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, Volume 3: 100094. https://doi.org/10.1016/j.crmicr.2021.100094

Kumar, V., Panneerselvam, S., Soni, J. K., Lakshmanan, A, and Kumar, P A. (2017). Response of blue-green algae on rice (Oryza sativa) crop production at elevated temperature. The Pharma Innovation Journal; 6(8): 26-28.  

Lin, W., Lin, M., Zhou, H., Wu, H., Li Z., Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. Plos, 14(5): e0217018. https://doi.org/10.1371/journal.pone.0217018

Morari F., Vellidis G. and Gay, P. (2011). Fertilizers, In Encyclopedia of Environmental Health, Pages 727-737. https://doi.org/10.1016/B978-0-444-52272-6.00464-5  

Mückschel, F., Ollo, E., Glaeser, S. P., Düring, R., Yan, F., Velten, H., Theilen, U. and Frei, M. (2023). Nitrogen use efficiency of microalgae application in wheat compared to mineral fertilizer. J. Plant Nutr. Soil Sci. 2023;186:522–531. https://doi.org/10.1002/jpln.202300125

Mustafa, Y. C., Barik, K., Cakmakci, R. and Sahin, F. (2007). Effects of mineral and biofertilizers on barley growth on compacted soil. Acta Agriculture Scandinavica Section B – Soil and Plant Science. pp. 324-332.  

Mutum, L., Janda, T., Ördög, V., and Molnár, Z. (2022). Biologia Futura: potential of different forms of microalgae for soil improvement. Biologia Futura 73:1–8

Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Singh, B. K, Nathanail, C. P., Coulon, F., Kirk T. Semple, K. T,. Jones, K C, Barclay, A. and Aitken R. J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International 156 106616 https://doi.org/10.1016/j.envint.2021.106616

Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña Aranda, J. J. P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E. R.; López Arellanes, M. E.; Castañeda-Antonio, M. D.; Coronado-Apodaca, K. G.; Gomes Araújo, R.; Sosa-Hernández, J. E.; et al., (2023). Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar. Drugs 2023, 21, 93. https://doi.org/10.3390/md21020093 

Parmar, P., Kumar, R., Neha, Y. and Srivatsan V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci. 14:1073546. https://doi.org/10.3389/fpls.2023.1073546

Penuelas, J., Coello, F. and Jordi Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12(5):1-9. https://doi.org/10.1186/s40066-023-00409-5

Prescott, G. W. (1970). How to Know The Freshwater Algae (2nd ed).Brown Co.

Prisa, D. and Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae 9, 829. https://doi.org/10.3390/horticulturae9070829

Puglisi, I., la Bella, E., Rovetto, E. I., lo Piero, A.R. and Baglieri, A. (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9, 123. https://doi.org/10.3390/plants9010123

Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L. H. (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology. 69:789–815. https://doi.org/10.1146/annurev-arplant-042817-040256  

Rodríguez-Eugenio, N., McLaughlin, M. and Pennock, D. 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp.

Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E. and Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192

Saadatnia, H. & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant soil environment. 55, 2009 (5): 207–212. https://doi.org/10.17221/384-PSE   

Santini, G., Biondi, N., Rodolfi, L. and Tredici, M. R. (2021). Plant biostimulants from cyanobacteria: (2021). An emerging strategy to improve yields and sustainability in agriculture. Plants, 10, 643. https://doi.org/10.3390/plants10040643

Santos V. B, Araujo A. S. F., Leite L. F. C., Nunes L. A. P. L. and Melo W. J. (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems, Geoderma, vol. 170, pp. 227-231. https://doi.org/10.1016/j.geoderma.2011.11.007   

Shahbandeh, M. (2022). Barley production worldwide 2008/2009 – 2021/2022. Statista.  

Sido, M. Y., Tian, Y., Wang, X. and Wang, X. (2022). Application of microalgae Chlamydomonas applanata M9V and Chlorella vulgaris S3 for wheat growth promotion and as urea alternatives. Front. Microbiol. 13:1035791. https://doi.org/10.3389/fmicb.2022.1035791

Singh, J. S., Kumar, A., Rai, A. N., Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7, 529. https://doi.org/10.3389/fmicb.2016.00529

Singh, J. S., Pandey, V. C. and Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development, Agric. Ecosyst. Environ., vol. 140, no. 3–4, pp. 339–353, 2011. https://doi.org/10.1016/j.agee.2011.01.017   

Sinha, R. K., Valani, D., Chauhan, K. and Agarwal, S. (2010). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms : Reviving the dreams of Sir Charles Darwin, J. Adv. Biotechnol. Sustain. Dev., vol. 2, no. August, pp. 113–128, 2010.

https://doi.org/10.5897/JABSD.9000017

Solomon, W., Mutum, L., Janda, T. and Molnár, Z. (2023). Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regulation (2023) 101:53–65 https://doi.org/10.1007/s10725-023-01019-8

Song, X., Bo, Y., Feng, Y., Tan, Y., Zhou, C., Yan, X., Ruan, R., Xu, Q. and Cheng, P. (2022), Potential applications for multifunctional microalgae in soil improvement. Front. Environ. Sci. 10:1035332. https://doi.org/10.3389/fenvs.2022.1035332

Thava Vasanthan, Ratnajothi Hoover, 2009. Barley Starch: Production, Properties, Modification and Uses, Editor(s): James BeMiller, Roy Whistler, In Food Science and Technology, Starch (Third Edition), Academic Press, 601-628. https://doi.org/10.1016/B978-0-12-746275-2.00016-1

Venkataraman. G. S. (2020). Algae for Fertilizer. Algae Production Systems.   

Walsh, K., Bhattarai, S., Rolfe, J., Mohr-Bell. R. and Benyam, A. (2020). Accelerating Innovation to Application of Compost and Compost Industries in the Great Barrier Reef Catchments, report provided to Regional Development Australia

Wehr, J. D., Sheath, R. G., Kociolek, J. P. (2014). Freshwater Algae of North America: Ecology and Classification. Academic Press.

Wuang, S. C., Khin, M. C., Chua, P. Q. D., and Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009.   

Wudil, A. H., Usman, M., Rosak-Szyrocka, J., Pila?r, L. and Boye, M. (2022). Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public Health 2022, 19, 14836. https://doi.org/10.3390/ijerph192214836

Youssef, M. M. A. &. Eissa, M. F. M. (2014). Biofertilizers and their role in management of plant parasitic nematodes. A review. Journal of Biotechnology and Pharmaceutical Research vol. 5, no. 1, pp. 1–6.

Zang, Y., Chun, I., Zhang L., Hong, S., Zheng, W. W. Xu, K. (2016). Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Scientia Horticulturae, 200: 13-18. https://doi.org/10.1016/j.scienta.2015.12.057

Download this article as Download

How to cite this article:

Melanie McCullen, Sadiqul Awal and Andrew Christie. 2024. Growth and Germination of Barley Seedlings (Hordeum vulgare) Using Local Freshwater Algae.Int.J.Curr.Microbiol.App.Sci. 13(6): 164-176. doi: https://doi.org/10.20546/ijcmas.2024.1306.018
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations