Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:6, June, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(6): 119-133
DOI: https://doi.org/10.20546/ijcmas.2024.1306.013


Determination of the Electrical Conductivity, pH and Fertilizer Concentration of Insecticide-Nematicide Solutions and Nutritional Cocktails Applied to Pineapple (Ananas comosus MD-2)
Oscar Cortes1, Juan Delgado1, César Guillén2, Eduardo Salas3 and Mario Araya4*
1LIFE-RID-AMVAC Costa Rica,
2Entomologist University of Costa Rica,
3Catedrático Escuela Ciencias Agrarias, Universidad Nacional-Costa Rica,
4AMVAC Chemical Corporation
*Corresponding author
Abstract:

In commercial pineapple farms, the electrical conductivity (EC), pH, and fertilizer concentration of the insecticide-nematicide and nutrient solutions that are applied commercially were determined to analyze if they are related with the presence of toxicity symptoms in the pineapple foliage. Insecticide-nematicide and nutrient solutions were evaluated at one thousandth of the solution used commercially per hectare and correspondingly using one thousandth of the rate indicated per hectare of the product or of each fertilizer source. The EC of the solution was measured with a SevenGo DuoTM SG23 Mettler Toledo conductivity meter and the pH with a Hanna® Instruments model HI9811-5 electronic pH meter and in each fertilizer solution the concentration of macronutrients (N-P-K-Ca- Mg), micronutrients (Zn, Fe, B, Mn, Cu) and total fertilizer was estimated. The EC of the insecticide-nematicide solutions fluctuated between 0.14 and 0.43 mS cm-1 and the pH between 3.6 and 7.3. On farms that added citric acid to the insecticide-nematicide solutions, their pH was reduced to a very acidic condition that can favor the mineralization of the product and its corresponding loss of efficacy. In the nutrient solutions, the EC varied between 40.5 and 111.8 mS cm-1, the pH between 2.7 and 4.7, and the fertilizer concentration between 2.6 and 13.09%. The fertilizer sources that most contributed to the EC were UAN (31-0-0), YaraMilaTM ComplexTM, potassium chloride and potassium sulfate given their amounts included in the nutritional cocktails. Four independent factors or some of them together or a combination of all of them, could be associated or explain the phytotoxicity in the crop: nutritive solutions with EC greater than 40 mS cm-1, very low pH of the solutions less than 4.7, fertilizer concentrations greater than 4, 5 and 9%, and over-application of the solutions. Although some nutrient solutions did not exceed 5% concentration, their EC exceeded 40 mS cm-1. It seems then that to avoid leaf crop damage it would be more accurate to use the EC instead of the fertilizer concentration. To prevent foliage toxicity or burning due to foliar fertilization, it is suggested to apply low EC fertilizer cocktails of less than 40 mS cm-1. This can be achieved by adding smaller amounts of the products that most contribute to EC. Another possibility is to incorporate sources that lead to a reduction in the EC of the fertilizer cocktails, for example, using potassium citrate (Greenplants® K) as a source of K. The pH of the solutions must be adjusted to the optimal range (5.5 to 6.5) of absorption suggested for the crops and over-application of the solutions must be eliminated. Therefore, the pressurization of the equipment must be carried out with the arms outside the terraces, in terraces that do not have the total number of beds, the arms of the boom must not be tilted and in the curves of the roads when it is necessary to go back to align the equipment and continue with the application, the nozzles should be closed to prevent over application of the nutrient solutions.


Keywords: Fertilization, Foliar spray, Nutrient solution, Phytotoxicity, Total Dissolved Solids, Pineapple leaves


References:

Alam, S. M. 1984. Effect of nutrient solution pH on N-sources (NH4/NO3) on the growth and elemental content of rice plants. Agronomie, EDP Sciences 4(4):361-365. https://doi.org/10.1051/agro:19840407

Alexopoulos, A.  A., Marandos, E., Assimakopoulou, A., Vidalis, N., Petropoulos, S. A., and Karapanos, I. C. 2021. Effect of nutrient solution pH on the growth, yield and quality of Taraxacum officinale and Reichardia picroides in a floating hydroponic system. Agronomy 11:1118. 15 p. https://doi.org/10.3390/agronomy11061118 

Al-Harbi, A. R. 1994. Effect of manipulating nutrient solution salinity on the growth of cucumber (Cucumis sativus L.) growth in NFT. Acta Hort. 361: 267-273. https://doi.org/10.17660/ActaHortic.1994.361.25 

Araya, M. 2019a. Chemical control of symphylids in pineapples. Acta Horticulturae.1239:167-172. https://doi.org/10.17660/ActaHortic.2019.1239.20 

Araya, M. 2019b. Chemical control of mealybugs in pineapples. Acta Horticulturae.1239:147-152. https://doi.org/10.17660/ActaHortic.2019.1239.18 

Araya, M., Cortes, O., and Salas, E. 2021. Entendiendo la problemática de los nematodos en piña (Ananas comosus). Revista Científica LIFE-RID: 66-79.

Asher, C. J., and Edwards, D. G. 1983. Modern solution culture techniques. pp. 94-119. In: Pirson, A., and Zimmermann, M. H. Eds. Encyclopedia of Plant Physiology. Vol 15-A. SpringerVerlag, New York.

Benton, J. J, Jr. 2003. Agronomic Handbook. Management of crops, soils, and their fertility. CRC PRESS, Washington DC. 450p.

Bunt, J. A. 1987. Mode of action of nematicides. Pp: 461-468. In: Veech, J. A. and Dickson, D. W. eds. Vistas on nematology. Society of Nematologists, Inc. Hyattsville, Maryland.

Castellón, G. J. J., Muñoz, R. B., and Hernández, R. M, L. 2015. Calidad del agua para riego en la agricultura protegidaen Tlaxcala. Ingeniería Revista Académica 19(1):39-50. http://www.redalyc.org/articulo.oa?id=46750924004  

Castillo, A., Astúa, R., Jiménez, W., Salas. E., Delgado. J., and Araya, M. 2021. Reducción de la tasade la asimilación neta de CO2 en hojas de piña (Ananas comosus cv MD-2) por Pratylenchus brachyurus. Revista Científica LIFE-RID: 81-91.

Chávez, V. C., Salas, A. E., and Araya, V. M. 2018. Control químico de nematodos en plantas de banano (Musa AAA) cultivadas en macetas. Fitosanidad 22(1):27-34.

Chitwood, D. J. 2003. Nematicides. Pp: 1104-1115. In: Encyclopedia of Agrochemicals.

Deer, H. M., and Beard, R. 2001. Effect of water pH on the chemical stability of pesticides. Utah State University Extension. Electronic publishing. Fact Sheet.AG/Pesticides/14. 3p.

Devine, G. J., Eza, D., Ogusuku, E., and Furlong, M. J. 2008. Uso de insecticidas: contexto y consecuencias ecológicas. Rev. Peru Med Exp Salud Pública 25(1):74-100.

Dubaniewicz, K. 2022. pH, EC, and temperature – measuring and adjusting the fundamental parameters. The art of growing blog, plant health. BlueLab, ebook, 34p.

Ehret, D. L., and Ho, C. 1986. Effects of osmotic potential in nutrient solution on diurnal growth of tomato fruit. Journal of Experimental Botany. 182:1294-1302. https://doi.org/10.1093/jxb/37.9.1294

Eichert, T., and Fernández, V. 2012. Uptake and release of elements by leaves and other aerial plant parts. Pp:71-84. In: Marschner, P. Eds. Mineral nutrition of higher plants. Third edition. Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00004-2

El Jornalero, 2014. La calidad del agua para fertirriego. Pp: 20, 22-23.

Fageria, N. K., Baligar, V. C., and Jones, C. A. 2011. Growth and mineral nutrition of field crops. Third Edition CRC Press Taylor & Francis Group. 550p. https://doi.org/10.1201/b10160 

Fernández, V., Sotiropoulos, T., and Brown, P. 2013. Foliar fertilization Scientific Principles and Field Practices. International Fertilizer Industry Association (IFA), France, 140p.

Fishel, F. 2002. Effects of water pH on the stability of pesticides. University of Missouri-Columbia, Integrated Pest Management MU Guide. 2p.

Fishel, F. M., and Ferrell, J. A. 2019. Water pH and the effectiveness of pesticides. University of Florida. PI-156. 3p. https://doi.org/10.32473/edis-pi193-2007

Flint, D. R. 1977. Chemical evidence for systemic nematicidal activity of Nemacur. Pflanzenschuts-Nachrichten Bayer 30(2):153-163.

Garita, C. R. A. 2014. La piña. Primera edición. Editorial Tecnológica de Costa Rica. 566p.

Gómez, V. J. M., Pitty, A., and Miselem, J. M. 2006. Efecto del pH del agua en la efectividad de los herbicidas glifosato, fluazifop-p-butil y bentazon. Ceiba 47(1-2):19-23.

Gutiérrez, M. V. 2002. Aspectos básicos de la nutrición mineral de las plantas absorción foliar de sustancias útiles en la aplicación de agroquímicos al follaje. Pp:1-6. In: Meléndez, G., and Molina, E. Eds. Fertilización Foliar: Principios y Aplicaciones Memoria. Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Hepton, A. 2003. Cultural system. Pp:109-142. In: Bartholomew, D., Paull, R., and Rohrbach, K. eds. The pineapple: Botany, Production and Uses. CABI Publishing.

Herrera, W. 2001 Manejo de suelos y fertilización del cultivo de piña (Ananas comosus) (L) Merr. Pp: 102-108. In: Meléndez, G., and Molina, E. Eds. Fertilidad de suelos y manejo de la nutrición de cultivos en Costa Rica. Memoria. CIA/UCR Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Kafkafi, U., and Bernstein, N. 1996. Root growth under salinity stress. Pp. 445-451. In: Waisel, Y., Eshel, A, and Kafkafi, U. Eds. Plant root, the hidden half. 2nd edition. Marcel Dekker, New York.

Malézieux, E., and Bartholomew, D. P. 2003. Plant nutrition. Pp:143-165. In: Bartholomew, D., Paull, R., and Rohrbach, K. eds. The pineapple: Botany, Production and Uses. CABI Publishing.

Malézieux, E., Cote, F., and Bartholomew, D. P. 2003. Crop environment, plant growth and physiology. Pp:69-107.  In: Bartholomew, D. P., Paull, R. E., and Rohrbach, K. G. Eds. The pineapple: botany, productions and uses. CABI Publishing, CAB International.

Marinho, F. J. L., Fernández, P. D., and Gheyi, H. R. 1998. Desenvolvimento inicial do abacaxizeiro, cv. Smooth Cayenne, sob diferentes condicoes de salinidade da agua (Initial growth of pineapple cv. Smooth Cayenne under different water salinity conditions). Revista Brasileira de Engenharia Agricola e Ambiental 2, 1–5. https://doi.org/10.1590/1807-1929/agriambi.v02n01p1-5 

Marschner, H. 1995. Mineral nutrition of higher plants. 2nd edition. London: Academic Press. 889p.

Marschner, P. 2012. Mineral nutrition of higher plants. Third Edition, Elsevier Ltd. 643p.

McKenry, M. 1981. The nature mode of action and biological activity of nematicides. Pp: 59-73. In: Pimentel, D. eds. Handbook of Pest Management in Agriculture. Florida, US, CRC Press.

McKenry, M. 1994. Nematicides. Pp: 87-95. In: Encyclopedia de Agricultural Science.Vol. 3, NewYork, US. Academic Press.

McKie, P., and Johnson, W. S. 2002. Water pH and its effect on pesticide stability. University of Nevada Cooperative Extension Fact Sheet. FS-02-36. 4p.

Mengel, K., and Kirkby, E. A. 2000. Principios de nutrición vegetal. Instituto Internacional de la Potasa, Basilea, Suiza. Traducción. RJ. Melgar RJ. 608p.

Molina, E. 2002c. Fuentes de fertilizantes foliares. Pp: 26-35. In: Meléndez, G., and Molina, E. Eds. Fertilización Foliar: Principios y Aplicaciones Memoria. Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Molina, E. A. 2002a. Fertilización foliar de cultivos frutícolas. Pp: 82-100. In: Meléndez, G., and Molina, E. Eds. Fertilización Foliar: Principios y Aplicaciones Memoria. Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Molina, E. A. 2002b. Cálculo de disoluciones y calidad del agua. Pp:36-44. In: Meléndez, G., and Molina, E. Eds. Fertilización Foliar: Principios y Aplicaciones Memoria. Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Palma, B., and Zavala, D. 2020a. Determinación de los valores fitotóxicos de las soluciones nutritivas entérminos de la conductividad eléctrica (CE) en el cultivo de piña (Ananas comosus) y opciones de manejo mediante el uso de fertilizantes de mayor bioeficacia. Revista Científica 2020, LIFE-RID. Pp:47-54.

Palma, B., and Zavala, D. 2020b. 2. Greenplants K: Cambiando el juego de la nutrición de potasio en el cultivo de piña (Ananas comosus) en Costa Rica. Revista Científica 2020, LIFE-RID. Pp:55-60.

Parra, T. S., Villareal, R. M., Sánchez, P. P., Corrales, M. J. L., and Hernández, V. S. 2008. Efecto del calcio y potencial osmótico de la solución nutritiva en la pudrición apical, composición mineral y rendimiento de tomate. Interciencia 33(6):1-11. http://www.redalyc.org/articulo.oa?=33933610 

Paull, R. E., and Duarte, O. 2011. Tropical fruits. Volume 1. 2nd Edition. CAB International, UK. 400p.

Preciado, R. P., Boca, C. G. A., Tirado, T. J. L., Kohashi, S. J., Tijerina, C. L., and Martínez, G. A. 2003. Presiónosmótica de la solución nutritiva y la producción de plántulas de melón. Terra Latinoamericana 21(4):461-470. http://www.redalyc.org/articulo.oa?=57321402 

Prigge, M., and Gutiérrez, S. M. V. 2014. Pineapple photosynthesis and leaf Sap pH as a surrogate of CAM performance in the field. A research advance. Pineapple News 21:18-23.

Py, C., Lacoeuilhe. J. J., and Teisson. C. 1987. The pineapple cultivation and uses. Edtions G.P. Maisonneuve & Larouse 15, rue Victor-Cousin Paris 568p.

Rebolledo, M. A, Uriza, A. D. E., and Rebolledo, M. L. 1998. Tecnología para la producción de piña en México. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro de Investigación Regional Golfo Centro, Campo Experimental Papaloapan, Veracruz, México. 159p.

Rebolledo, M. A, Uriza, A. D. E., Del Ángel, P. A. L., Rebolledo, M. L., and Zetina, L. R. 2011. La piña y su cultivo enMéxico: Cayena Lisa y MD2. Centro de Investigación Regional Golfo Centro Campo Experimental Cotaxtla. Medellín de Bravo, Veracruz, Libro Técnico No 27. 306p.

Roberts, T. R., and Hutson, D. H. 1999. Fenamiphos: Pp:309-313. In: Metabolic pathways of agrochemicals. Part 2: insecticides and fungicides. The Royal Society of Chemistry Information Services.

Roosta, R. R., and Rezaei, I. 2014. Effect of nutrient solution pH on the vegetative and reproductive growth and physiological characteristics of rose Cv. ‘Grand gala’ in hydroponic system. Journal of Plant Nutrition, 37(13):2179-2194. https://doi.org/10.1080/01904167.2014.920377 

Santos, C. B., and Ríos, M. D. 2016. Cálculo de soluciones nutritivas en suelo y sin suelo. Servicio de Agricultura y Desarrollo Rural. Cabildo Insular de Tenerife. 113p.

Schilder, A. 2008. Effect of water pH on the stability of pesticides. MSU Extension, Department of Plant Pathology, Michigan State University. 8p.

Segura, M. A. 2002. Fertilización foliar: principios y aplicaciones. Pp:19-25. In: Meléndez, G., and Molina, E. Eds. Fertilización Foliar: Principios y Aplicaciones Memoria. Universidad de Costa Rica, Centro de Investigaciones Agronómicas, Laboratorio de suelos y foliares.

Sinclair, E. 1993. The pineapple plant. Pp:8-10- In: Broadley, R. H., Wassman, R. C., and Sinclair, E. R. eds. Pineapple pest and disorders. Department of Primary Industries, Brisbane, Queensland.

Singh, H., Dunn, B., Payton, M., and Brandenberger, L. 2019. Fertilizer and cultivar selection of lettuce, Basil, and Swiss chard for hydroponic production. HortTechnology 29:50–56. https://doi.org/10.21273/HORTTECH04178-18 

Sipes, B. S., and Chinnasri, B. 2018. Nematode parasites of pineapple. Pp:717-737. In: Sikora, R. A., Coyne, D., Hallmann, J., and Timper, P. Eds. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International.

Sipes, B. S., and Schmitt, D. P. 1995. Evaluation of Ethoprop and tetrathiocarbonate for reniform nematode control in pineapple. Supplement to the Journal of Nematology 27(4S):639-644.

Solís, C. Y., Zuñiga, Z. L., and Mora, A. D. 2018. La conductividad como parámetro predictivo de la dureza del agua en pozos y nacientes de Costa Rica. Tecnología en Marcha. 31(1):35-46. https://doi.org/10.18845/tm.v31i1.3495 

Steiner, A. A. 1973. The selective capacity of plant for ions and its importance for the composition and treatment of nutrient solution. I.S.O.S.C. Proceedings 3rd International Congress on Soilless Culture. Sassari, Italy. pp. 43-53.

Steiner, A. A. 1980. The selective capacity of plant for ions and its importance for the composition and treatment of nutrient solution. I.S.O.S.C. Proceedings 5th International Congress on Soilless Culture. Wageningen, The Netherlands. pp. 83-95.

Swete, K. D. 1993. Nutritional disorders. Pp:33-42. In: Broadley, R. H., Wassman, R. C., and Sinclair, E. R. eds. Pineapple pest and disorders. Department of Primary Industries, Brisbane, Queensland.

Tharp, C., and Sigler, A. 2013. Pesticide performance and water quality. Montana State University Extension. MontGuide MT201305AG New 12/13. 4p.

Urbina, S. E., Morales, R. E. J., Franco, M. O., Reyes, A. J. C., and Mejía, C. J. 2015. Presión osmótica de la soluciónnutritiva en la producción y calidad de lilium (Lilium sp.) ´Marlon´. Acta Agrícola y Pecuaria 1(2):64-69.

Van der Lugt, G. 2016. Nutrient solutions for greenhouse crops. Booklet, AlzoNobel, Eurofins Agro, Geerten Van Der Lugt, NMI, SQM, Yara. 94p.

Van Gundy, S., and McKenry, M. V. 1977. Action of nematicides. Pp: 263-283. In: Horsfall, J. G., and Cowling, E. G. eds. Plant Disease. An Advanced Treatise. Vol I. New York, US, Academic Press.

Vargas, A., Gonzáles, R., Vargas, R., and Blanco, F. 2001. Concentración de minerales disueltos, calidad y respuesta a enmiendas del agua para la aplicación de agroquímicos en zonas productoras de banano (Musa AAA) de Costa Rica. CORBANA 27(54):105-118.

Vásquez, J. J. 2015. News from Costa Rica. Phytotoxicity resulting from spraying different salt concentrations on MD-2 pineapple. Pineapple News 2015, 22:23-26.

Vásquez, J. J., and Bartholomew, D. P. 2018. Plant nutrition. Pp:175-202. In: Sanewski, G., Bartholomew, D. P., and Paull, R. E. Eds. The Pineapple botany, production and uses. 2nd Edition. CABI.

White, P. J. 2012. Long-distance transport in the xylem and phloem. Pp:49-70. In: Marschner, P. Eds. Mineral nutrition of higher plants. Third Edition. Elsevier, Academic Press.

Whitford, F., Penner, D., Johnson, B., Bledsoe, L., Wagoner, N., Garr, J., Wise, K., Oberneyer, J., and Blessing, A. 1986. The impact of water quality on pesticide performance. Purdue University Extension. PPP-86. 38p.

Zeck, W. M. 1971. The systemic nematicidal potential of Nemacur. Pflanzenschuts-Nachrichten Bayer 24(1):114-140.


Download this article as Download

How to cite this article:

Oscar Cortes, Juan Delgado, César Guillén, Eduardo Salas and Mario Araya. 2024. Determination of the Electrical Conductivity, pH and Fertilizer Concentration of Insecticide-Nematicide Solutions and Nutritional Cocktails Applied to Pineapple (Ananas comosus MD-2).Int.J.Curr.Microbiol.App.Sci. 13(6): 119-133. doi: https://doi.org/10.20546/ijcmas.2024.1306.013
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations