Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:6, June, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(6): 38-51
DOI: https://doi.org/10.20546/ijcmas.2024.1306.004


Production of Thermostable β-Mannanase from Aspergillus niger using Submerged Fermentation
Department of Zoology, Govt. Holkar Science College, Indore – 452001, M.P., India
*Corresponding author
Abstract:

Mannanases are one of the important lignocellulose degrading enzymes having potential biotechnological applications in a wide range of industries, including detergent industry, food and feed technology, coffee extraction, bioethanol production, pharmaceutical field, pulp and paper industry. The present study deals with the β-mannanase producing fungi. Fungal Strain Aspergillus niger was isolated from compost soil samples collected from Indore region and it was found to produce a significant amount of β-mannanase on solid agar plate and liquid media. Optimization was carried out for various physico-chemical parameters for maximum production of mannanase. After standardization we found that Aspergillus niger gave maximum production of mannanase (21U/ml) on the 10th day of incubation. Among different carbon and nitrogen sources 1% LBG and 0.5% yeast extract shows maximum enzyme production i.e. 21 U/ml and 39.89 U/ml respectively. The best temperature and pH for maximum yield of mannanase were 37oC (21.34 U/ml) and pH 6.0 (26.46 U/ml). The optimum inoculum size was found to be 107 spores/ml, giving maximum mannanase yield up to 22.63 U/ml. Mannanase was partially purified using ammonium sulfate fractionation and desalting using G25 column. The partially purified mannanase had optimum pH and temperature for activity at 3.8 and 75oC respectively and was found stable at 3-7 pH and 40-70oC temperature range.


Keywords: Mannanase, Optimization, Production, Aspergillus niger, Thermostable


References:

Blibech, M., Ghorbel, R. E., Chaari, F., Dammak, I., Bhiri, F., Neifar, M. and Chaabouni, S. E. (2011). Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. Int. Sch. Res. Network. 938347:1-5. https://doi.org/10.5402/2011/938347

Blibech, M., Ghorbel, R. E. and Fakhfakh, I. (2010). Purification and characterization of a low molecular weight of ?-mannanase from Penicillium occitanis Pol6. Applied Biochemistry and Biotechnology 160:1227–1240. https://doi.org/10.1007/s12010-009-8630-z

Chandra, M. R. S., Lee,Y. S., Park, I. H., Zhou,Y. Kim, K. K. and Choi, Y. L. (2011). Isolation, purification and characterization of a thermostable ?-mannanase from Paenibacillus sp. DZ3. Journal of Applied Biological Chemistry. 54:325–331. https://doi.org/10.3839/jksabc.2011.052

Chantorn, S. T., Buengsrisawat, K., Pokeseam, A., Sombat, T., Dangpram, P., Jantawon, K. and Nitisinprasert, S. (2013). Optimization of extracellular mannanase production from Penicillium oxalicum KUB-SN2-1 and application for hydrolysis property. Songklanakarin J. Sci. Technol. 35(1):17-22.

Chauhan, P. S., Bharadwaj, A., Puri, N. and Gupta, N. (2014). Optimization of medium composition for alkali-thermostable mannanase production by Bacillus nealsonii PN-11 in submerged fermentation. Int.J.Curr.Microbiol.App.Sci 3(10):1033-1045.

Chauhan, P. S., Puri, N., Sharma, P., and Gupta, N. (2012). Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 93: 1817–1830. https://doi.org/10.1007/s00253-012-3887-5

Dan, Z., Wenxiang, P., Gang, S., Hongzhi, L., Xue, L. and Jingping, G. (2012). Optimization of mannanase production by Bacillus sp. HDYM-05 through factorial method and response surface methodology. African Journal of Microbiological Research. 6:176-182. https://doi.org/10.5897/AJMR11.1219

de Nicolas-Santiago, S., Regalado-Gonzalez, C., Garcia-Almendarez, B. (2006). Physiological, morphological, and mannanase production studies on Aspergillus niger uam-gs1 mutants. Electron J Biotechnol.9(1):50–60.

Dhawan, S., and Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 27, 197–216. https://doi.org/10.1080/07388550701775919

Do, B. C., Dang, T. T., Berrin, J. G., Haltrich, D., To, K. A., Sigoillot, J. C. (2009). Cloning, expression in Pichiapastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb.Cell Fact. 8:59. https://doi.org/10.1186/1475-2859-8-59

Eneyskaya, E. V., Sundqvist, G., Golubev, A. M., Ibatullin, F. M., Ivanen, D. R., Shabalin, K. A., Brumer, H. and Kulminskaya, A. A., (2009). Transglycosylation and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie. 91, 632–638. https://doi.org/10.1016/j.biochi.2009.03.009

Karboune, S., Hocine, L. L., Anthoni, J., Geraert, P. A. and Kermasha, S. (2009). Properties of selected hemicellulases of a multi enzymatic system from Penicillium funiculosum. Bioscience Biotechnology Biochemistry. 73(6):1286-1292. https://doi.org/10.1271/bbb.80808

Kote, N. V., Patil, A. G. G. and Mulimani, V. H. (2009). Optimization of the production of thermostable endo- -1,4Mannanase from a newly isolated Aspergillus niger gr and Aspergillus flavus gr. Applied Biochemistry and Biotechnology.152: 213-223.

Liu Z, Z., Ning, C., Yuan, M., Yang, S., Wei, X., Xiao, M. (2020). High-level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in manno oligosaccharide preparation. Bioresour. Technol. 295:122257. https://doi.org/10.1016/j.biortech.2019.122257

Liu, Z. H., Qi, W. and He, Z. M. (2008). Optimization of β-Mannanase Production from Bacillus licheniformis TJ-101 Using Response Surface Methodology. Biochemical Engineering. 22: 355 362.

Maijala, P., Kango, N., Szijarto, N. and Viikari, L. (2012). Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek. 101:905–917 https://doi.org/10.1007/s10482-012-9706-2

Maruyama, Y. and Nakajima, T. (2000). The aman6 gene encoding a yeast mannan backbone degrading 1,6-?-D-mannanase in Bacillus circulans: cloning, sequence analysis, and expression. Bioscience, Biotechnology and Biochemistry. 64:2018–2020. https://doi.org/10.1271/bbb.64.2018

Meenakshi, Singh G., Bhalla, A., Hoondal, G. S. (2010). Solid state fermentation and characterization of partially purified thermostable mannanase from Bacillus sp. MG-33. Bioresources. 5(3):1689–1701. https://doi.org/10.15376/biores.5.3.1689-1701

Miller, L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 208-218.

Olaniyi, O. O., Ekundayo, T. C., Igbe, O. F. and Fagbohungbe, Y. D. (2015). Influence of Cultural and Nutritional Factors on β-Mannanase Production by Penicillium italicum under Submerged State Fermentation. British Microbiology Research Journal. 5(6): 481-489. https://doi.org/10.9734/BMRJ/2015/6887

Olaniyi, O. O., Igbe, F. O. and Ekundayo, T. C. (2013). Optimization studies on mannanase production by Trichosporonoides oedocephalis in submerged state fermentation. Journal of Biotechnology and Pharmaceutical Research. 4(7): 110-116.

Poorna, C. A. and Prema, P. (2006). Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochemical Engineering Journal. 32:106-112. https://doi.org/10.1016/j.bej.2006.09.016

Rashid, J. I. A., Samat, N. and Yusoff, W. M. W. (2012). Screening and optimization of medium composition for mannanase production by Aspergillus terrus SUK-1 in solid state fermentation using statistical experimental methods. Research Journal of Microbiology, 7:242-255. https://doi.org/10.3923/jm.2012.242.255

Sadaqat, B., Dar, M.A., Sha, C., Abomohra, A., Shao, W. and Yong, Y. C. (2024). Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol.Biotechnol. 9;40(4):130. https://doi.org/10.1007/s11274-024-03912-4

Srivastava, P. K. and Kapoor, M. (2014). Cost effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Preparative Biochemistry and Biotechnology. 44(4): 392-417. https://doi.org/10.1080/10826068.2013.833108

Titapoka, S., Keawsompong, S., Haltrich, D. and Nitisinprasert, S. (2008). Selection and characterization of mannanase producing bacteria useful for the formation of prebiotic manno oligosaccharides from copra meal. World Journal of Microbiology and Biotechnology. 24: 1425-1433. https://doi.org/10.1007/s11274-007-9627-9

Zhou, C., Xue, Y., and Ma, Y. (2018). Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Microb.Cell Fact.17:124. https://doi.org/10.1186/s12934-018-0973-0


Download this article as Download

How to cite this article:

Prashant Chourasia and Gaherwal, S. 2024. Production of Thermostable β-Mannanase from Aspergillus niger using Submerged Fermentation.Int.J.Curr.Microbiol.App.Sci. 13(6): 38-51. doi: https://doi.org/10.20546/ijcmas.2024.1306.004
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations