Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:5, May, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(5): 83-89
DOI: https://doi.org/10.20546/ijcmas.2024.1305.012


Methane Emission Reduction Coupled with Yield Increase in Paddy (Oryza sativa L.) Crop Inoculated with Anabaena sp. – A Closed Chamber Study
J. Vaishyaa and Appavoo Meline Sheela*
Department of Civil Engineering, Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu– 600 025, India
*Corresponding author
Abstract:

The study's objective was to find out how Cyanobacterium Anabaena sp. helps to improve rice crop development and lower methane emissions. Different dosages of urea were added to the paddy plant cultivated in a closed chamber after it was injected with Anabaena sp. A gas chromatograph was used to measure the amount of methane that the plant released as it reached maturity. Anabaena sp.'s impact on plant growth and yield was noted concurrently. Methane emissions from paddy plants grown with 25% urea and 75% Anabaena sp. (T4) ranged from a minimum of 20 mg plant-1 season-1 to a maximum of 80 mg plant-1 season-1 (T1). On the other hand, for plants planted without urea and Anabaena sp., plant height and grain yield both increased in T4. The plant heights were 67.6±1.0, 82.8±1.4, 99.0±1.2, and 103.5±1.4 cm plant-1 after 40, 60, 80, and 100 days post-planting, respectively. Additionally, T4 produced 80 mg plant-1 more grain. In rice plants treated with 75% urea and 25% Anabaena sp. inoculation, plant height and yield increased but methane emission was lower (20 mg plant-1 season-1). Anabaena sp. inoculation is currently a practical method for lowering methane emissions and enhancing plant development in the rice environment.


Keywords: Anabaena sp., Growth and yield, Methane emission, Rice ecosystem


References:

Acton, S. D. and E. M. Baggs: Interactions between N application rate, CH4 oxidation and N2O production in soil. Biogeochemistry., 103, 15–26 (2011). https://doi.org/10.1007/s10533-010-9442-5

Cerbin, S., G. Pérez., M. Rybak, L. Wegnerowski., A. Konowalczyk., N. Helmsing., S. Naus-Weizer., M. Meima-Franke., L. Pytlak., C. Rajaijmakeres., W. Nowak and P. L. E. Bodelier: Methane-derived carbon as a driver for cyanobacterial growth. Front. Microbiol., 13, 837198 (2022). https://doi.org/10.3389/fmicb.2022.837198

Chen, J., Y. Xing., Y. Wang., W. Zhang., Z. Guo and W. Su: Application of iron and steel slags in mitigating greenhouse gas emissions: A review. Sci. Total Environ., 844, 157041 (2022). https://doi.org/10.1016/j.scitotenv.2022.157041

Chittora, D., M. Meena, T. Barupal, P. Swapnil and K. Sharma. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. Rep., 22:100737 (2020). https://doi.org/10.1016/j.bbrep.2020.100737

Chua, A., O. L. Sherwood., L. Fitzhenry., C. K. Y. Ng., P. F. McCabe and C. t. Daly: Cyanobacteria-derived proline increases stress tolerance in Arabidopsis thaliana root hairs by suppressing programmed cell death. Front. Plant Sci., 11, 490075 (2020). https://doi.org/10.3389/fpls.2020.490075

Dong, D., J. Li, S. Ying, J., J. Wu., X. Han., Y. Teng., M. Zhou., Y. Ren and P. Jiang: Mitigation of methane emission in a rice paddy field amended with a biochar-based slow-release fertilizer. Sci. Total Environ., 792, 148460 (2021). https://doi.org/10.1016/j.scitotenv.2021.148460

Dong, W., J. Guo., L. Xu., Z. Song., J. Zhang., A. Tang., X C. Zhang., C. Leng., Y. Liu., L. Wang., L. Wang., Y. Yu., Z. Yang., Y. Yu., Y. Meng and Y. Lai: Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ Sci., 64, 289-297 (2018).

El-Habet, H. B. I. and A. Y. Elsadany: Maximize Growth and Productivity of Rice by Using N2-Fixing Anabaena oryzae and Spirulina platensis Extract. J. Plant Prod., 11(11), 1105 - 1114 (2020). https://doi.org/10.21608/JPP.2020.130933

Feng, Y., D. Li., H. Sun., L. Xue., B. Zhou., L. Yang., J. Liu and B. Xing: Wood vinegar and biochar co-application mitigate nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environ. Pollut., 267, 115403 (2020). https://doi.org/10.1016/j.envpol.2020.115403

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, pp.151.

Jackson, R. B., M. Saunois., P. Bousquet., J. G. Canadel., B. Poulter., A. R. Stavert., P. Bergamaschi., Y. Niwa., A. Segers., A. Tsuruta: Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett., 15, 071002 (2020). https://doi.org/10.1088/1748-9326/ab9ed2

Joseph, R. G., N. S. Duxbury., G. J. Kidron., C. H. Gibson and R. Schild: Mars: Life, subglacial oceans, abiogenic photosynthesis, seasonal increases and replenishment of atmospheric oxygen. Open Astron., 9,189–209 (2020). https://doi.org/10.1515/astro-2020-0020

Kholssi, R., E. A. N. Marks., J. Minon., O. Montero., J. F. Lorentz., A. Debdoubi and C. Rad: Biofertilizing effects of Anabaena cylindrica biomass on the growth and nitrogen uptake of wheat. Commun. Soil Sci. Plant Anal., 53(10), 1216-1225 (2022). https://doi.org/10.1080/00103624.2022.2043350

Kimani, S. M., P. O. Bimantara., S. Hattori., K. Tawaraya., S. Sudo., X. Xu and W. Cheng: Co-application of poultry-litter biochar with Azolla has synergistic effects on CH4 and N2O emissions from rice paddy soils. Heliyon., 6(9), e05042 (2020). https://doi.org/10.1016/j.heliyon.2020.e05042

Kumar, K., R. A. Mella-Herrera and J. W. Golden: Cyanobacterial Heterocysts. Cold Spring HarbPerspect Biol., 14(8), 1 - 4 (2010). 2(4): a000315. https://doi.org/10.1101/cshperspect.a000315

Malyan, S. K., A. Bhatia., R. Tomer., R. C. Harit., N. Jain., A. Bhowmik and R. Kaushik: Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environ. Sci. Pollut. Res., 28, 51425–51439 (2021). https://doi.org/10.1007/s11356-021-14210-z

Mishra, A., S. Rajput., P. S. Gupta., V. Goyal., S. Singh., S. Sharma., S. Shukla., A. Singh., K. Shukla and A. Varma: Role of Cyanobacteria in Rhizospheric Nitrogen Fixation. In:Soil Nitrogen Ecology (Eds.: C. Cruz., K. Vishwakarma., D. K. Choudhary and A. Varma). Springer, Cham, pp. 497 - 519 (2021). https://doi.org/10.1007/978-3-030-71206-8_25

Moore, A. W. Azolla: Biology and agronomic significance. Bot. Rev., 35, 17–34 (1969). https://doi.org/10.1007/BF02859886

Oladipo, D. G., K. Wei., L. Hu: Short-Term Assessment of Nitrous Oxide and Methane Emissions on a Crop Yield Basis in Response to Different Organic Amendment Types in Sichuan Basin. Atmosphere., 12(9), 1104 (2021). https://doi.org/10.3390/atmos12091104

Prasanna, R., V. Kumar., S. Kumar., A. K. Yadav., U. Tripathi., A. K. Singh., M. C. Jain., P. Gupta., P. K. Singh and N. Sethinathan: Methane production in rice soil is inhibited by cyanobacteria. Microbiol. Res., 157 (1), 1 – 6 (2002). https://doi.org/10.1078/0944-5013-00124

Qiu, J., C. Li., L. Wang., H. Tang., H. Li., E. V. Ranst: Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Glob. Biogeochem. Cycles., 23(1), 1 – 16 (2009). https://doi.org/10.1029/2008GB003180

Rippka, R., J. Deruelles., J. Waterbury., M. Herdman and R. Y. Stanier: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111, 1- 61 (1979). https://doi.org/10.1099/00221287-111-1-1

Sander, B. O., P. Schneider., R. Romasanta., K. Somoy-Pascual., E. B. Sibayan., C. A. Asis and R. Wassmann: Potential of Alternate Wetting and Drying Irrigation Practices for the Mitigation of GHG Emissions from Rice Fields: Two Cases in Central Luzon (Philippines). Agriculture., 10(8), 350 (2020). https://doi.org/10.3390/agriculture10080350

Scholz, V., R. U. Meckenstock., P. Nielsen and N. Risgaard-Petersen: Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun., 11, 1878 (2020). https://doi.org/10.1038/s41467-020-15812-w

Sharma, V., R. Prasanna., F. Hossain., V. Muthusamy., L. Nain., S. Das., Y. S. Shivay and A. Kumar: Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech., 10, 154 (2020). https://doi.org/10.1007/s13205-020-2141-6

Singh, A. A., J. Kuttuppurath., K. Abbhishek., N. Mallick., S. Raj., G. Chander and S. Dixit: Biogenic link to the recent increase in atmospheric methane over India. J. Environ. Manage., 289, 112526 (2021). https://doi.org/10.1016/j.jenvman.2021.112526

State of Indian Agriculture, 2017

Tang, J., J. Wang., Z. Li., S. Wang and Y. Qu. Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline–alkaline paddy fields in Northeast China. Sustainability., 10(2), 475 (2018). https://doi.org/10.3390/su10020475

Tiwari, S., C. Singh and J. S. Singh. 2020. Wetlands: A Major Natural Source Responsible for Methane Emission. In: Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment (Eds.: A. Upadhyay., R. Singh and D. Singh). Springer, Singapore Nature, Singapore, pp. 59 – 74.

Toribio, A. J., F. Suárez-Estrella., M. M. Jurado., J. A. López-González., M. R. Martínez-Gallardo and M. J. López : Design and validation of cyanobacteria-rhizobacteria consortia for tomato seedlings growth promotion. Sci Rep., 12, 13150 (2022). https://doi.org/10.1038/s41598-022-17547-8

Wassmann, R., M. Aulakh., R. Lantin., H. Rennenberg and J. B. Adula. 2002. Methane emission patterns from rice fields planted to several rice cultivars for nine seasons. Nutr. Cycl. Agroecosystems., 64, 111–124. https://doi.org/10.1023/A:1021171303510

Xu, P., W. Zhou., I. Khan., M. Shaaban., Y. Jiang and R. Hu: Nitrogen fertilizer application in the rice-growing season can stimulate methane emissions during the subsequent flooded fallow period. Sci. Total Environ., 744, 140632 (2020). https://doi.org/10.1016/j.scitotenv.2020.140632

Yao, Z., X. Zheng., H. Dong., R. Wang., B. Mei and J. Zhu: A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ., 152, 1 – 9 (2012). https://doi.org/10.1016/j.agee.2012.02.004

Yuan, J., Yi, X and L. Cao: Three-Source Partitioning of Methane Emissions from Paddy Soil: Linkage to Methanogenic Community Structure. Int. J. Mol. Sci.,20:1586 (2019). https://doi.org/10.3390/ijms20071586

Zarezadeh, S., H. Riahi., Z. Shariatmadari and A. Sonboli: Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. J ApplPhycol., 32, 1231–1241 (2020). https://doi.org/10.1007/s10811-019-02028-9

Zhu, Z., T. Ge., S. Liu., Y. Hu., R. Ye., M. Xiao., C. Tong., Y. 2018. Kuzyakov and J. Wu: Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem., 116, 369-377. http://dx.doi.org/10.1016/j.soilbio.2017.11.001

Download this article as Download

How to cite this article:

Vaishyaa, J. and Meline Sheela, A. 2024. Methane Emission Reduction Coupled with Yield Increase in Paddy (Oryza sativa L.) Crop Inoculated with Anabaena sp. – A Closed Chamber Study.Int.J.Curr.Microbiol.App.Sci. 13(5): 83-89. doi: https://doi.org/10.20546/ijcmas.2024.1305.012
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations