|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Pea, Pisum sativum L. is one of the most important vegetable crops grown in rabi season throughout the world. It is cultivated worldwide over 5.9 million hectares with a production of about 11.7 million tons. In India, it is grown over 0.7 million hectares yielding about 0.6 million tons. Among various obstacles (biotic stress) in cultivating this crop, root-knot nematode (RKN) which is one of the most economically important plant-parasitic nematodes (PPNs) has been reported to cause severe yield losses of up to 20%-56%. RKNs are polyphagous, sedentary endoparasites which is estimated to cause an annual loss of $ 78 billion in agricultural production around the world. In order to control the infection level, frequent and excessive application of chemical nematicides have caused high toxicity level to the soil ecosystems as well as to the environment. An alternative approach of application i.e., biological control agents is an environmentally safe and effective method for sustainable management of RKNs. Among various bioagents, fungal and bacterial agents were reported to reduce RKN density by inhibiting egg hatching, repelling, immobilizing and killing J2s. Nematophagous fungi are capable of capturing, killing, and digesting nematodes. As a group of important natural enemies of nematode pests, nematophagous bacteria also exhibit diverse modes of action including parasitizing, producing toxins, antibiotics, enzymes, competing for nutrients, inducing systemic resistance of plants and promoting plant health.
Abd-El-Khair, H.; El-Nagdi, W.; Youssef, M.; Abd-Elgawad, M.M. and Dawood, M.G. (2019). Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root-knot nematode Meloidogyne incognita on cowpea. Bull. Natl. Res. Cent. 43:1–7. https://doi.org/10.1186/s42269-019-0108-8
Anwar, S.A. and Mcknery, M.V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pak.J. Zool.42(2):135-141.
Ashraf, M.S. and Khan, T.A. (2010). Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch. Phytopathol. Plant Protect. 43(6):609–614. https://doi.org/10.1080/03235400801972434
Barros, A.F.; Campos, V.P.; Souza, L.N.; Costa, S.S.; Terra, W.C. and Lessa, J.H. (2018). Morphological, enzymatic and molecular characterization of root-knot nematodes parasitizing vegetable crops. Hortic. Bras. 36:473–479. https://doi.org/10.1590/S0102-053620180408
Brahma, U. and Borah, A. (2016). Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J. Nematol. 46(1):58–61.
Chinheya, C.C.; Yobo, K.S. and Laing, M.D. (2017). Biological control of the root-knot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol. Control. 109:37–41. https://doi.org/10.1016/j.biocontrol.2017.03.009
Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N. and Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu. Rev. Phytopathol. 56:381-403. https://doi.org/10.1146/annurev-phyto-080417-045833
Crickmore, N. (2005). Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol. 13: 347–350. https://doi.org/10.1016/j.tim.2005.06.002
De, R.K.; Ali, S.S. and Dwivedi, R.P. (2000). Interaction between Fusarium oxysporum f. sp. lentis and Meloidogyne javanica in lentil. Indian Phytopathol.53:353.
Decraemer, W. and Hunt, D.J. (2006). Structure and classification. In: Perry, R.N. and Moens, M. (eds.). Plant nematology, CABI Publishing, Wallingford, pp 3–32.
Gogoi, D. and Mahanta, B. (2013). Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann. Plant. Prot. Sci. 21(1):172–175.
GoI. (2021). Agricultural statistics at a glance 2021. Department of Agriculture, Cooperation and Farmers Welfare, Directorate of Economics and Statistics, Government of India. https://eands.dacnet.nic.in/. Accessed 22 November 2023.
Gokta, N. and Swarup, G. (1988). On the potential of some bacterial biocides against root-knot cyst nematodes. Indian J. Nematol. 18: 152–153.
Li, B.; Xie, G.L.; Soad, A. and Coosemans, J. (2005). Suppression of Meloidogyne javanica by antagonistic and plant growth promoting rhizobacteria. J. Zhejiang Univ. Sci. 6B: 496–501. https://doi.org/10.1631/jzus.2005.B0496
Lima, F.S.; Correa, V.R.; Nogueira, S.R. and Santos, P.R. (2017). Nematodes affecting soybean and sustainable practices for their management. In: Soybean–basis of yield, biomass and productivity, pp 95–110. https://doi.org/10.5772/67030
Lin, D.; Qu, L.J.; Gu,H. and Chen, Z. (2001). A3.1-kbgenomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 91: 1044–1050. https://doi.org/10.1046/j.1365-2672.2001.01475.x.
Machado, A.C.Z. (2014). Current nematode threats to Brazilian agriculture. Curr. Agric. Sci. Technol. 20(1):26–35.
Marroquin, L.D.; Elyassnia, D.; Griffitts, J.S.; Feitelson, J.S. and Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics155: 1693–1699. https://doi.org/10.1093/genetics/155.4.1693
Mehtab, A.; Javed, N.; Khan, S.A. and Gondal, A.S. (2013). Combined effect of Pasteuria penetrans and neem extract on the development of root-knot nematode in medicinal plants. Pak.J. Nematol. 31:55–59.
Parihar, K.; Rehman, B.; Ganai, M. A.; Asif, M. and Siddiqui, M. A. (2015). Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J. Plant Pathol. Microbiol. 1:1–5. https://doi.org/10.4172/2157-7471.S1-004
Peiris, P.U.S.; Li, Y.; Brown, P. and Xu, C. (2020). Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biocontrol. 144:104235. https://doi.org/10.1016/j.biocontrol.2020.104235
Pownall, T.L.; Udenigwe, C.C. and Aluko, R.E. (2010). Amino acids composition and antioxidant properties of pea seed (Pisum sativum) enzymatic protein hydrolysate fractions. J. Agric. Food Chem.58(8):4712-4718. https://doi.org/10.1021/jf904456r
Raveendra, H.R.; Krishna, M.R. and Mahesh, K.R. (2011). Management of root-knot nematode Meloidogyne incognita by using oil cake, bioagent, trap crop, chemicals and their combination. Int. J. Sci. Nat. 2:519–523.
Rovira, A.D. and Sands, D.C. (1977). Fluorescent Pseudomonas– a residual component in the soil microflora. J. Appl. Bacteriol. 34: 253–259. https://doi.org/10.1111/j.1365-2672.1971.tb02284.x
Siddiqui, I. A. (2002). Suppression of Meloidogyne javanica by Pseudomonas aeruginosa and Bacillus subtilis in tomato. Nematol. Mediterr. 30: 125–130.
Siddiqui, I. A. and Shaukat, S. S. (2003). Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil. Biol. Biochem. 35:1615–1623. https://doi.org/10.1016/j.soilbio.2003.08.006
Siddiqui, Z. A. and Mahmood, I. (1999). Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol. 69: 167–179. https://doi.org/10.1016/S0960-8524(98)00122-9
Sidhu, G.S. and Webster, J.M. (1981). Genetics of Plant Nematode Interaction. In: Zuckerman, B.M. and Rohde, R.A. (eds.). Plant Parasitic Nematodes. Vol. III, New York: Academic Press, pp 61–87.
Sikandar, A.; Zhang, M.; Wang, Y.; Zhu, X.; Liu, X.; Fan, H. and Duan, Y. (2020). Review Article: Meloidogyne incognita (Root-Knot Nematode) A Risk To agriculture. Appl. Ecol. Environ. Res. 18:1679–1690. http://dx.doi.org/10.15666/aeer/1801_16791690
Sikora, R. A. (1992). Management of the antagonistic potential in agriculture ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 30: 245–270. https://doi.org/10.1146/annurev.py.30.090192.001333
Singh, C. (1983). Field Pea (Pisum spp.) In: Singh, C. (ed.). Modern Techniques of Raising Field Crops, New Delhi: Oxford and IBH Publ. Co. Pvt. Ltd, pp219–228.
Singh, S.; Singh, B. and Singh, A.P. (2015). Nematodes: a threat to sustainability of agriculture. Procedia Environ.Sci. 29:215–216. https://doi.org/10.1016/j.proenv.2015.07.270
Singh, U.B.; Sahu, A.; Sahu, N.; Singh, B.P.; Singh, R.K.; Renu, S.; Jaiswal, R.K.; Sharma, B.K.; Singh, H.B.; Manna, M.C.; Subba Rao, A. and Prasad, R.S. (2013). Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum Mill.) against root-knot disease caused by Meloidogyne incognita. Appl. Soil. Ecol. 63:45–56.
Zhao, D.; Zhao, H.; Zhao, D.; Zhu, X.; Wang, Y.; Duan, Y.; et al., (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control. 119:12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
Zhao, J.; Wang, S.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y. and Chen, L. (2021). Isolation, and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb 1997 and Serratia plymuthica Sneb 2001 for the biological control of root-knot nematode. Appl. Soil. Ecol. 164:103924. https://doi.org/10.1016/j.apsoil.2021.103924