Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:1, January, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(1): 94-103
DOI: https://doi.org/10.20546/ijcmas.2024.1301.012


An OMICS-Based Approach Studies Natural Products
A. Nimitha*
St.Raphaels CGHSS Ollur, Thrissur, Kerala, India
*Corresponding author
Abstract:

In conjunction with bioinformatics and comparable developments in tools, software, and visualisation modelling, current developments in plant sciences have propelled the scientific community into an active dispute over information. Despite the advent of Omics and numerous other remarkable bioinformatics tools, a considerable proportion of researchers still require further familiarisation with these instruments. The present evaluation centres on the potential implementations of diverse in silico tools and technologies in the analysis of plant sciences. Gaining knowledge of these many technologies will contribute to an enhanced comprehension of plant characteristics, including resistance to pathogens, tolerance to stress, and nutritional enhancement. Furthermore, we are collaborating on many challenges and limitations in the field of plant sciences that are associated with the bioinformatics methodology.


Keywords: Bioinformatics, Omics, Plant studies, Proteomics, Transcriptomics


References:

Alfaro, J.A., Bohländer, P., Dai, M., Filius, M., Howard, C.J., van Kooten, X.F., Ohayon, S., Pomorski, A., Schmid, S., Aksimentiev, A., Anslyn, E. V, Bedran, G., Cao, C., Chinappi, M., Coyaud, E., Dekker, C., Dittmar, G., Drachman, N., Eelkema, R., Goodlett, D., Hentz, S., Kalathiya, U., Kelleher, N.L., Kelly, R.T., Kelman, Z., Kim, S.H., Kuster, B., Rodriguez-Larrea, D., Lindsay, S., Maglia, G., Marcotte, E.M., Marino, J.P., Masselon, C., Mayer, M., Samaras, P., Sarthak, K., Sepiashvili, L., Stein, D., Wanunu, M., Wilhelm, M., Yin, P., Meller, A., Joo, C., 2021. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617. https://doi.org/10.1038/s41592-021-01143-1

Angel, T.E., Aryal, U.K., Hengel, S.M., Baker, E.S., Kelly, R.T., Robinson, E.W., Smith, R.D., 2012. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem. Soc. Rev. 41, 3912–3928. https://doi.org/10.1039/c2cs15331a

Antonov, A. V, Dietmann, S., Mewes, H.W., 2008. KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol. 9, R179. https://doi.org/10.1186/gb-2008-9-12-r179

Babarinde, I.A., Li, Y., Hutchins, A.P., 2019. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput. Struct. Biotechnol. J. 17, 628–637. https://doi.org/https://doi.org/10.1016/j.csbj.2019.04.012

Barrera-Redondo, J., Piñero, D., Eguiarte, L.E., 2020. Genomic, Transcriptomic and Epigenomic Tools to Study the Domestication of Plants and Animals: A Field Guide for Beginners. Front. Genet. 11, 1–24. https://doi.org/10.3389/fgene.2020.00742

Beck, L., Geiger, T., 2022. MS-based technologies for untargeted single-cell proteomics. Curr. Opin. Biotechnol. 76, 102736. https://doi.org/https://doi.org/10.1016/j.copbio.2022.102736

Bhagwat, M., Young, L., Robison, R.R., 2012. Using BLAT to find sequence similarity in closely related genomes. Curr. Protoc. Bioinforma. Chapter 10, 10.8.1-10.8.24. https://doi.org/10.1002/0471250953.bi1008s37

Bumgarner, R., 2013. Overview of DNA microarrays: types, applications, and their future. Curr. Protoc. Mol. Biol. Chapter 22, Unit 22.1. https://doi.org/10.1002/0471142727.mb2201s101

Calderón-González, K.G., Hernández-Monge, J., Herrera-Aguirre, M.E., Luna-Arias, J.P., 2016. Bioinformatics Tools for Proteomics Data Interpretation BT - Modern Proteomics – Sample Preparation, Analysis and Practical Applications, in: Mirzaei, H., Carrasco, M. (Eds.),. Springer International Publishing, Cham, pp. 281–341. https://doi.org/10.1007/978-3-319-41448-5_16

Callahan, N., Tullman, J., Kelman, Z., Marino, J., 2020. Strategies for Development of a Next-Generation Protein Sequencing Platform. Trends Biochem. Sci. 45, 76–89. https://doi.org/10.1016/j.tibs.2019.09.005

Cánovas, F.M., Dumas-Gaudot, E., Recorbet, G., Jorrin, J., Mock, H.-P., Rossignol, M., 2004. Plant proteome analysis. Proteomics 4, 285–298. https://doi.org/10.1002/pmic.200300602

Chen, C., Hou, J., Tanner, J.J., Cheng, J., 2020. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21082873

Chen, H., Yin, X., Guo, L., Yao, J., Ding, Y., Xu, X., Liu, L., Zhu, Q.-H., Chu, Q., Fan, L., 2021. PlantscRNAdb: A database for plant single-cell RNA analysis. Mol. Plant 14, 855–857. https://doi.org/https://doi.org/10.1016/j.molp.2021.05.002

Chen, W., Yin, X., Mu, J., Yin, Y., 2007. Subfemtomole level protein sequencing by Edman degradation carried out in a microfluidic chip. Chem. Commun. 2488–2490. https://doi.org/10.1039/B700200A

Chu, Q., Zhang, X., Zhu, X., Liu, C., Mao, L., Ye, C., Zhu, Q.-H., Fan, L., 2017. PlantcircBase: A Database for Plant Circular RNAs. Mol. Plant 10, 1126–1128. https://doi.org/https://doi.org/10.1016/j.molp.2017.03.003

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcze?niak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X., Mortazavi, A., 2016. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13. https://doi.org/10.1186/s13059-016-0881-8

de Graaf, S.C., Hoek, M., Tamara, S., Heck, A.J.R., 2022. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 14, 2079449. https://doi.org/10.1080/19420862.2022.2079449

de Sena Brandine, G., Smith, A.D., 2019. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research. https://doi.org/10.12688/f1000research.21142.2

DeLuca, D.S., Levin, J.Z., Sivachenko, A., Fennell, T., Nazaire, M.-D., Williams, C., Reich, M., Winckler, W., Getz, G., 2012. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532. https://doi.org/10.1093/bioinformatics/bts196

Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A., 2003a. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3. https://doi.org/10.1186/gb-2003-4-5-p3

Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A., 2003b. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, R60. https://doi.org/10.1186/gb-2003-4-9-r60

Deswal, R., Gupta, R., Dogra, V., Singh, R., Abat, J.K., Sarkar, A., Mishra, Y., Rai, V., Sreenivasulu, Y., Amalraj, R.S., Raorane, M., Chaudhary, R.P., Kohli, A., Giri, A.P., Chakraborty, N., Zargar, S.M., Agrawal, V.P., Agrawal, G.K., Job, D., Renaut, J., Rakwal, R., 2013. Plant proteomics in India and Nepal: current status and challenges ahead. Physiol. Mol. Biol. Plants 19, 461–477. https://doi.org/10.1007/s12298-013-0198-y

Dong, H., Zhang, A., Sun, H., Wang, H., Lu, X., Wang, M., Ni, B., Wang, X., 2012. Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods. Mol. Biosyst. 8, 1206–1221. https://doi.org/10.1039/C1MB05366C

Dupree, E.J., Jayathirtha, M., Yorkey, H., Mihasan, M., Petre, B.A., Darie, C.C., 2020. A critical review of bottom-up proteomics: The good, the bad, and the future of this field. Proteomes 8, 1–26. https://doi.org/10.3390/proteomes8030014

Feng, J., Meyer, C.A., Wang, Q., Liu, J.S., Shirley Liu, X., Zhang, Y., 2012. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28, 2782–2788. https://doi.org/10.1093/bioinformatics/bts515

Geniza, M., Jaiswal, P., 2017. Tools for building de novo transcriptome assembly. Curr. Plant Biol. 11–12, 41–45. https://doi.org/https://doi.org/10.1016/j.cpb.2017.12.004

Ghosh, S., Chan, C.-K.K., 2016. Analysis of RNA-Seq Data Using TopHat and Cufflinks. Methods Mol. Biol. 1374, 339–361. https://doi.org/10.1007/978-1-4939-3167-5_18

Giacomello, S., 2021. A new era for plant science: spatial single-cell transcriptomics. Curr. Opin. Plant Biol. 60, 102041. https://doi.org/https://doi.org/10.1016/j.pbi.2021.102041

Guo, J., Huang, Z., Sun, J., Cui, X., Liu, Y., 2021. Research Progress and Future Development Trends in Medicinal Plant Transcriptomics. Front. Plant Sci. 12, 691838. https://doi.org/10.3389/fpls.2021.691838

Hale, J.E., 2013. Advantageous Uses of Mass Spectrometry for the Quantification of Proteins. Int. J. Proteomics 2013, 219452. https://doi.org/10.1155/2013/219452

Han, X., Aslanian, A., Yates, J.R. 3rd, 2008. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490. https://doi.org/10.1016/j.cbpa.2008.07.024

Hina, F., Yisilam, G., Wang, S., Li, P., Fu, C., 2020. De novo Transcriptome Assembly, Gene Annotation and SSR Marker Development in the Moon Seed Genus Menispermum (Menispermaceae). Front. Genet. 11, 1–13. https://doi.org/10.3389/fgene.2020.00380

Hou, Y.P., Diao, T.T., Xu, Z.H., Mao, X.Y., Wang, C., Li, B., 2022. Bioinformatic Analysis Combined With Experimental Validation Reveals Novel Hub Genes and Pathways Associated With Focal Segmental Glomerulosclerosis. Front. Mol. Biosci. 8, 1–9. https://doi.org/10.3389/fmolb.2021.691966

Hu, J., Rampitsch, C., Bykova, N. V., 2015. Advances in plant proteomics toward improvement of crop productivity and stress resistance. Front. Plant Sci. 6, 1–15. https://doi.org/10.3389/fpls.2015.00209

Hunt, D.F., Yates, J.R. 3rd, Shabanowitz, J., Winston, S., Hauer, C.R., 1986. Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 83, 6233–6237. https://doi.org/10.1073/pnas.83.17.6233

Jammali, S., Aguilar, J.-D., Kuitche, E., Ouangraoua, A., 2019. SplicedFamAlign: CDS-to-gene spliced alignment and identification of transcript orthology groups. BMC Bioinformatics 20, 133. https://doi.org/10.1186/s12859-019-2647-2

Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27

Kapustin, Y., Souvorov, A., Tatusova, T., Lipman, D., 2008. Splign: algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3, 20. https://doi.org/10.1186/1745-6150-3-20

Karagiannis, K., Simonyan, V., Mazumder, R., 2013. SNVDis: A Proteome-wide Analysis Service for Evaluating nsSNVs in Protein Functional Sites and Pathways. Genomics. Proteomics Bioinformatics 11, 122–126. https://doi.org/https://doi.org/10.1016/j.gpb.2012.10.003

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L., 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36

Kosová, K., Vítámvás, P., Urban, M.O., Prášil, I.T., Renaut, J., 2018. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 9, 1–22. https://doi.org/10.3389/fpls.2018.00122

Kumar, G., Ertel, A., Feldman, G., Kupper, J., Fortina, P., 2020. iSeqQC: a tool for expression-based quality control in RNA sequencing. BMC Bioinformatics 21, 56. https://doi.org/10.1186/s12859-020-3399-8

Kumari, S., Verma, L.K., Weller, J.W., 2007. AffyMAPSDetector: a software tool to characterize Affymetrix GeneChipTM expression arrays with respect to SNPs. BMC Bioinformatics 8, 276. https://doi.org/10.1186/1471-2105-8-276

Leggett, R.M., Ramirez-Gonzalez, R.H., Clavijo, B.J., Waite, D., Davey, R.P., 2013. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet. 4, 288. https://doi.org/10.3389/fgene.2013.00288

Li, Y., Ge, X., Peng, F., Li, W., Li, J.J., 2022. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Genome Biol. 23, 79. https://doi.org/10.1186/s13059-022-02648-4

Libault, M., Pingault, L., Zogli, P., Schiefelbein, J., 2017. Plant Systems Biology at the Single-Cell Level. Trends Plant Sci. 22, 949–960. https://doi.org/https://doi.org/10.1016/j.tplants.2017.08.006

Liu, Y., Lu, S., Liu, K., Wang, S., Huang, L., Guo, L., 2019. Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 15, 135. https://doi.org/10.1186/s13007-019-0515-8

Lowe, R., Shirley, N., Bleackley, M., Dolan, S., Shafee, T., 2017. Transcriptomics technologies. PLOS Comput. Biol. 13, e1005457. https://doi.org/10.1371/journal.pcbi.1005457

Macklin, A., Khan, S., Kislinger, T., 2020. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin. Proteomics 17, 17. https://doi.org/10.1186/s12014-020-09283-w

Mahmood, K., Orabi, J., Kristensen, P.S., Sarup, P., Jørgensen, L.N., Jahoor, A., 2020. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Sci. Rep. 10, 13475. https://doi.org/10.1038/s41598-020-70406-2

Malone, J.H., Oliver, B., 2011. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 9, 34. https://doi.org/10.1186/1741-7007-9-34

Martin, L.B.B., Fei, Z., Giovannoni, J.J., Rose, J.K.C., 2013. Catalyzing plant science research with RNA-seq. Front. Plant Sci. 4, 1–10. https://doi.org/10.3389/fpls.2013.00066

Mergner, J., Kuster, B., 2022. Plant Proteome Dynamics. Annu. Rev. Plant Biol. 73, 67–92. https://doi.org/10.1146/annurev-arplant-102620-031308

Mi, H., Muruganujan, A., Casagrande, J.T., Thomas, P.D., 2013. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566. https://doi.org/10.1038/nprot.2013.092

Miyashita, M., Presley, J.M., Buchholz, B.A., Lam, K.S., Lee, Y.M., Vogel, J.S., Hammock, B.D., 2001. Attomole level protein sequencing by Edman degradation coupled with accelerator mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 98, 4403–4408. https://doi.org/10.1073/pnas.071047998

Moreno-Santillán, D.D., Machain-Williams, C., Hernández-Montes, G., Ortega, J., 2019. De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats. Sci. Rep. 9, 6222. https://doi.org/10.1038/s41598-019-42560-9

Pandeswari, P.B., Sabareesh, V., 2019. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv. 9, 313–344. https://doi.org/10.1039/C8RA07200K

Patole, C., Bindschedler, L. V, 2019. Chapter 4 - Plant proteomics: A guide to improve the proteome coverage, in: Meena, S.N., Naik, M.M.B.T.-A. in B.S.R. (Eds.),. Academic Press, pp. 45–67. https://doi.org/https://doi.org/10.1016/B978-0-12-817497-5.00004-5

Pierlé, S.A., Dark, M.J., Dahmen, D., Palmer, G.H., Brayton, K.A., 2012. Comparative genomics and transcriptomics of trait-gene association. BMC Genomics 13, 669. https://doi.org/10.1186/1471-2164-13-669

Raghavan, V., Kraft, L., Mesny, F., Rigerte, L., 2022. A simple guide to de novo transcriptome assembly and annotation. Brief. Bioinform. 23. https://doi.org/10.1093/bib/bbab563

Ragoussis, J., Elvidge, G., 2006. Affymetrix GeneChip® system: moving from research to the clinic. Expert Rev. Mol. Diagn. 6, 145–152. https://doi.org/10.1586/14737159.6.2.145

Rajczewski, A.T., Jagtap, P.D., Griffin, T.J., 2022. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev. Proteomics 19, 165–181. https://doi.org/10.1080/14789450.2022.2070476

Rao, M.S., Van Vleet, T.R., Ciurlionis, R., Buck, W.R., Mittelstadt, S.W., Blomme, E.A.G., Liguori, M.J., 2019. Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front. Genet. 10, 1–16. https://doi.org/10.3389/fgene.2018.00636

Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616

Rodriques, S.G., Marblestone, A.H., Boyden, E.S., 2019. A theoretical analysis of single molecule protein sequencing via weak binding spectra. PLoS One 14, e0212868. https://doi.org/10.1371/journal.pone.0212868

Sessegolo, C., Cruaud, C., Da Silva, C., Cologne, A., Dubarry, M., Derrien, T., Lacroix, V., Aury, J.-M., 2019. Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules. Sci. Rep. 9, 14908. https://doi.org/10.1038/s41598-019-51470-9

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I., 2009. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123. https://doi.org/10.1101/gr.089532.108

Singhal, N., Kumar, M., Kanaujia, P.K., Virdi, J.S., 2015. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 1–16. https://doi.org/10.3389/fmicb.2015.00791

Smythers, A.L., Hicks, L.M., 2021. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg. Top. Life Sci. 5, 203–220. https://doi.org/10.1042/ETLS20200270

Spies, D., Ciaudo, C., 2015. Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis. Comput. Struct. Biotechnol. J. 13, 469–477. https://doi.org/https://doi.org/10.1016/j.csbj.2015.08.004

Squair, J.W., Gautier, M., Kathe, C., Anderson, M.A., James, N.D., Hutson, T.H., Hudelle, R., Qaiser, T., Matson, K.J.E., Barraud, Q., Levine, A.J., La Manno, G., Skinnider, M.A., Courtine, G., 2021. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692. https://doi.org/10.1038/s41467-021-25960-2

Standing, K.G., 2003. Peptide and protein de novo sequencing by mass spectrometry. Curr. Opin. Struct. Biol. 13, 595–601. https://doi.org/https://doi.org/10.1016/j.sbi.2003.09.005

Suriyakala, G., Sathiyaraj, S., Gandhi, A.D., Vadakkan, K., Mahadeva Rao, U.S., Babujanarthanam, R., 2021. Plumeria pudica Jacq. flower extract - mediated silver nanoparticles: Characterization and evaluation of biomedical applications. Inorg. Chem. Commun. 126, 108470. https://doi.org/10.1016/j.inoche.2021.108470

Tamara, S., den Boer, M.A., Heck, A.J.R., 2022. High-Resolution Native Mass Spectrometry. Chem. Rev. 122, 7269–7326. https://doi.org/10.1021/acs.chemrev.1c00212

Trapnell, C., Pachter, L., Salzberg, S.L., 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. https://doi.org/10.1093/bioinformatics/btp120

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515. https://doi.org/10.1038/nbt.1621

Ungaro, A., Pech, N., Martin, J.-F., McCairns, R.J.S., Mévy, J.-P., Chappaz, R., Gilles, A., 2017. Challenges and advances for transcriptome assembly in non-model species. PLoS One 12, e0185020. https://doi.org/10.1371/journal.pone.0185020

Vadakkan, K., 2020. Molecular Mechanism of Bacterial Quorum Sensing and Its Inhibition by Target Specific Approaches. ACS Symp. Ser. 1374, 21–234. https://doi.org/10.1021/bk-2020-1374.ch012

Vadakkan, K., 2019. Acute and sub-acute toxicity study of bacterial signaling inhibitor Solanum torvum root extract in Wister rats. Clin. Phytoscience 5. https://doi.org/10.1186/s40816-019-0113-3

Vadakkan, K., Cheruvathur, M.K., Chulliparambil, A.S., Francis, F., Abimannue, A.P., 2021. Proteolytic enzyme arbitrated antagonization of helminthiasis by Cinnamomum cappara leaf extract in Pheretima posthuma. Clin. Phytoscience 7. https://doi.org/10.1186/s40816-021-00261-9

Vadakkan, Kayeen, Choudhury, A.A., Gunasekaran, R., Hemapriya, J., Vijayanand, S., 2018a. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 16, 239–252. https://doi.org/10.1016/j.jgeb.2018.07.001

Vadakkan, Kayeen, Choudhury, A.A., Gunasekaran, R., Hemapriya, J., Vijayanand, S., 2018b. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 16, 239–252. https://doi.org/10.1016/j.jgeb.2018.07.001

Vadakkan, K., Gunasekaran, R., Choudhury, A.A., Ravi, A., Arumugham, S., Hemapriya, J., Vijayanand, S., 2018. Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract. Rhizosphere 6, 134–140. https://doi.org/10.1016/j.rhisph.2018.06.005

Vadakkan, K., Hemapriya, J., Anbarasu, A., Ramaiah, S., Vijayanand, S., 2020. Quorum quenching by 2-Hydroxyanisole extracted from Solanum torvum on Pseudomonas aeruginosa and its inhibitory action upon LasR protein. Gene Reports 21, 100802. https://doi.org/10.1016/j.genrep.2020.100802

Vadakkan, K., Hemapriya, J., Selvaraj, V., 2019a. Quorum quenching intervened in vivo attenuation and immunological clearance enhancement by Solanum torvum root extract against Pseudomonas aeruginosa instigated pneumonia in Sprague Dawley rats. Clin. Phytoscience 5, 24. https://doi.org/10.1186/s40816-019-0120-4

Vadakkan, K., Hemapriya, J., Selvaraj, V., 2019b. Quorum quenching intervened in vivo attenuation and immunological clearance enhancement by Solanum torvum root extract against Pseudomonas aeruginosa instigated pneumonia in Sprague Dawley rats.

Vadakkan, Kayeen, Vijayanand, S., Choudhury, A.A., Gunasekaran, R., Hemapriya, J., 2018c. Optimization of quorum quenching mediated bacterial attenuation of Solanum torvum root extract by response surface modelling through Box-Behnken approach. J. Genet. Eng. Biotechnol. https://doi.org/10.1016/j.jgeb.2018.02.001

Vadakkan, Kayeen, Vijayanand, S., Choudhury, A.A., Gunasekaran, R., Hemapriya, J., 2018d. Optimization of quorum quenching mediated bacterial attenuation of Solanum torvum root extract by response surface modelling through Box-Behnken approach. J. Genet. Eng. Biotechnol. 16, 381–386. https://doi.org/10.1016/j.jgeb.2018.02.001

Vadakkan, K., Vijayanand, S., Hemapriya, J., Gunasekaran, R., 2019c. Quorum sensing inimical activity of Tribulus terrestris against gram negative bacterial pathogens by signalling interference. 3 Biotech 9, 163. https://doi.org/10.1007/s13205-019-1695-7

Vecchi, M.M., Xiao, Y., Wen, D., 2019. Identification and Sequencing of N-Terminal Peptides in Proteins by LC-Fluorescence-MS/MS: An Approach to Replacement of the Edman Degradation. Anal. Chem. 91, 13591–13600. https://doi.org/10.1021/acs.analchem.9b02754

Vitorino, R., Guedes, S., Trindade, F., Correia, I., Moura, G., Carvalho, P., Santos, M.A.S., Amado, F., 2020. De novo sequencing of proteins by mass spectrometry. Expert Rev. Proteomics 17, 595–607. https://doi.org/10.1080/14789450.2020.1831387

Walker, J.M., 1997. The Dansyl-Edman Method for Manual Peptide Sequencing BT - Protein Sequencing Protocols, in: Smith, B.J. (Ed.),. Humana Press, Totowa, NJ, pp. 183–187. https://doi.org/10.1385/0-89603-353-8:183

Wang, B., Kumar, V., Olson, A., Ware, D., 2019. Reviving the transcriptome studies: An insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 10, 1–11. https://doi.org/10.3389/fgene.2019.00384

Wang, Z., Gerstein, M., Snyder, M., 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63. https://doi.org/10.1038/nrg2484

Winck, F.V., dos Santos, A.L.W., Calderan-Rodrigues, M.J., 2021. Plant Proteomics and Systems Biology BT - Advances in Plant Omics and Systems Biology Approaches, in: Vischi Winck, F. (Ed.),. Springer International Publishing, Cham, pp. 51–66. https://doi.org/10.1007/978-3-030-80352-0_3

Wu, T.D., Watanabe, C.K., 2005. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875. https://doi.org/10.1093/bioinformatics/bti310

Xie, H., Wang, W., Sun, F., Deng, K., Lu, X., Liu, H., Zhao, W., Zhang, Y., Zhou, X., Li, K., Hou, Y., 2017. Proteomics analysis to reveal biological pathways and predictive proteins in the survival of high-grade serous ovarian cancer. Sci. Rep. 7, 9896. https://doi.org/10.1038/s41598-017-10559-9

Yang, I.S., Kim, S., 2015. Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics Inform. 13, 119–125. https://doi.org/10.5808/GI.2015.13.4.119

Yang, M., Wang, Q., Wang, S., Wang, Y., Zeng, Q., Qin, Q., 2019. Transcriptomics analysis reveals candidate genes and pathways for susceptibility or resistance to Singapore grouper iridovirus in orange-spotted grouper (Epinephelus coioides). Dev. Comp. Immunol. 90, 70–79. https://doi.org/10.1016/j.dci.2018.09.003

Yang, Y., Smith, S.A., 2013. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics 14, 328. https://doi.org/10.1186/1471-2164-14-328

Yu, J., Gu, X., Yi, S., 2016. Ingenuity pathway analysis of gene expression profiles in distal nerve stump following nerve injury: Insights into wallerian degeneration. Front. Cell. Neurosci. 10, 1–12. https://doi.org/10.3389/fncel.2016.00274

Zhou, Q., Su, X., Jing, G., Chen, S., Ning, K., 2018. RNA-QC-chain: comprehensive and fast quality control for RNA-Seq data. BMC Genomics 19, 144. https://doi.org/10.1186/s12864-018-4503-6


Download this article as Download

How to cite this article:

Nimitha, P. A. 2024. An OMICS-Based Approach Studies Natural Products.Int.J.Curr.Microbiol.App.Sci. 13(1): 94-103. doi: https://doi.org/10.20546/ijcmas.2024.1301.012
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations