|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
The study, estimated to contribute to generate information to elucidate morphometrics and length-weight relationship and the relative growth of some body parts of the mud crab Scylla serrata. A total of 100 crabs were collected, from January 2018 to January 2019, from Sudanese Red Sea coast of the commercial catch land at Port Sudan. Each specimen was sexed and measured. Regression equations were calculated assuming an allometric growth equation, to determine relations between different morphometric characters in males and females, the carapace width/ length -weight relationship was estimated using the log form of the allometric growth equation. The values of the correlation coefï¬cient (R2) were calculated to know the accuracy of the dependent variable and the coefficient of determination. The study has shown that males are marginally heavier than females. Right chela propodus length and height are bigger in males than females, the right chela propodus length of males ranged from 7.83 to 15.44 mm. But the crabs length and width, Abdomen length and width are bigger in females than males. The carapace width of males ranged from 11.64 to 19.95 mm, while in females ranged from 12.73 to 20.86 mm, and the Abdomen width of females ranged from 7.4 to 10.47mm, while in males ranged from 2.94 to 5.7 mm. The right chela Propodus length and height in male and females are bigger than the left one. The results are shown that the allometric equations between the set of characters studied suggested that in most cases the relationship was negative. Growth was negatively allometric in both sexes. Carapace length against Carapace width was positively allometric for both males and females. These results of this study will make useful information, needed for the effective management and utilization of this resource in the Red Sea area.