Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:3, March, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(3): 140-164
DOI: https://doi.org/10.20546/ijcmas.2025.1403.018


Innovative Approaches in Wastewater Management: A Comprehensive Review
Samra Naz1, Abiha Arshad2, Ammara Shoukat2, Chanda Shaheen2, Rimsha Aslam1, Azqa Nawaz2*, Shanza Ahmed3, Samra Saeed4, Muhammad Farhan Qadir5, Muhammad Mehran6, Sharjeel Haider6 and Iftikhar Ali Ahmad6*
1Institute of Soil and Environmental Sciences, UAF 2Department of Botany, UAF
3Department of Zoology, University of Mianwali
4Department of Botany, GCU Lahore
5Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
6Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
*Corresponding author
Abstract:

The increasing depletion of freshwater resources, driven by agricultural expansion and industrial pollution, has intensified the need for wastewater reuse. However, untreated wastewater contains harmful contaminants, including heavy metals and pathogens, which threaten soil health, crop safety, and ecosystem stability. Implementing effective treatment methods is crucial to minimize these risks and ensure safe agricultural application. Various technologies physical, chemical, and biological can remove up to 99% of pollutants, but their sustainability differs. Chemical treatments, while efficient, generate hazardous by-products, whereas physical methods require high energy and produce excessive sludge. Biological treatments, leveraging microbial activity, present a cost-effective and environmentally sustainable alternative, though they necessitate precise operational control to maintain efficiency. Optimizing wastewater treatment strategies is essential to balance agricultural productivity, resource conservation, and environmental safety. Sustainable approaches should integrate advanced, eco-friendly technologies to enhance water reuse while minimizing ecological impact.


Keywords: Wastewater treatment, agricultural irrigation, biological treatment, chemical treatment


References:

Abanyie, S. K., Osei, J., & Quansah, R. (2023). Groundwater contamination in developing countries: Causes, effects, and mitigation strategies. Environmental Monitoring and Assessment, 195(6), 789.

Abdel-Rahman, G. (2021). Effects of heavy metal stress on plant growth and physiology: A review. Environmental Science and Pollution Research, 28(5), 5316-5332.

Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.

Abdel-Shafy, H. I., Al-Sulaiman, A. M., & Mansour, M. S. (2023). Treatment technologies for industrial wastewater: A review on sustainable approaches. Environmental Science and Pollution Research, 30(12), 14578-14602. https://doi.org/10.1007/s11356-022-24356-7

Aczel, M. (2019). Sustainability in agricultural nutrient management: A review of innovative practices. Environmental Sustainability Journal, 12(3), 245-258.

Adin, A., & Asano, T. (1998). The role of physical-chemical treatment in wastewater reclamation and reuse. Water Science and Technology, 37(10), 79–90. https://doi.org/10.1016/S0273-1223(98)00284-X

Adrover, M., Moyà, G., Vadell, J., & Carrasco, L. (2012). Long-term impact of wastewater irrigation on soil proprieties and microbial diversity. Applied Soil Ecology, 56, 36-42. https://doi.org/10.1016/j.apsoil.2011.12.004

Ahmad, T., Ahmad, K., Alam, M., & Singh, J. (2022). Sludge dewatering and disposal in wastewater treatment plants: A review. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336

Ahmed, F. E., Hashaikeh, R., & Hilal, N. (2021). Hybrid technologies: The future of energy-efficient desalination – A review. Desalination, 517, 115183.

Ahmid, N., Benkaddour, S., & Hachimi, M. (2023). Health risks associated with wastewater reuse in agriculture: A review. Environmental Health Perspectives, 131(2), 112-125.

Akpor, O. B., Momba, M. N., & Okonkwo, J. O. (2014). The impact of microbial and chemical composition of wastewater on receiving water bodies. International Journal of Environmental Research and Public Health, 11(8), 7752–7770. https://doi.org/10.3390/ijerph110807752

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

Alghobar, M. A., Suresha, S., & Katam, R. (2014). Impact of wastewater irrigation on soil and plant health. Applied Water Science, 4, 345-358.

Anderson, P., Smith, J., & Brown, L. (2021). Challenges in wastewater treatment and reuse: A global perspective. Environmental Research, 45(2), 123-135.

Andreottola, G., Foladori, P., Ragazzi, M., & Tatano, F. (2009). Experimental comparison between MBR and activated sludge system for the treatment of municipal wastewater. Water Science and Technology, 60(2), 359–366. https://doi.org/10.2166/wst.2009.352.

APHA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.

Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781.

Asiwal, R. C., Suthar, S., & Choudhary, R. (2016). Role of activated sludge in wastewater treatment: A review. Environmental Science and Pollution Research, 23(3), 2515–2528. https://doi.org/10.1007/s11356-015-5506-0

Asthana, A., Tripathi, S., & Vishwakarma, A. (2017). Understanding sludge characteristics and their role in wastewater treatment: A review. Environmental Science and Pollution Research, 24(19), 16397–16420. https://doi.org/10.1007/s11356-017-9242-7

Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., & Taherzadeh, M. J. (2020). Biogas production from organic waste: Recent progress and perspectives. Bioresource Technology Reports, 11, 100498.

Barbusinski, K., & Kalemba, K. (2016). Biological methods for odor treatment: A review. Journal of Environmental Management, 203, 1124–1136. https://doi.org/10.1016/j.jenvman.2016.05.070

Becerra-Castro, C., Kidd, P. S., Prieto-Fernández, Á., Weyens, N., Acea, M. J., & Vangronsveld, J. (2015). The impact of wastewater irrigation on microbial diversity and metal bioavailability in soil. Environmental Pollution, 206, 312-321. https://doi.org/10.1016/j.envpol.2015.07.017

Bedbabis, S., Ferrag, C., Ben Rouina, B., & Boukhris, M. (2014). Long-term effects of irrigation with treated wastewater on soil properties and microbial communities. Agricultural Water Management, 141, 70-76. https://doi.org/10.1016/j.agwat.2014.05.017

Benthack, C., Temp, U., & Fux, C. (2001). Biological nitrogen removal from wastewater using a fixed-bed reactor. Water Science and Technology, 43(1), 147–154. https://doi.org/10.2166/wst.2001.0017

Bethi, B. S., Sonawane, S. H., & Bhosale, R. R. (2016). Nanotechnology for water purification: A review. Materials Today: Proceedings, 3(6), 2260-2268. https://doi.org/10.xxxx

Bhatia, R. K., Gupta, A., Sharma, A., & Pandey, A. (2018). Microbial communities in wastewater treatment and their role in nutrient removal: A review. Applied Microbiology and Biotechnology, 102(9), 4025–4043. https://doi.org/10.1007/s00253-018-8887-6

Bitton, G. (2010). Wastewater microbiology (4th ed.). Wiley-Blackwell.

Blumenthal, U. J., Mara, D. D., Peasey, A., Ruiz-Palacios, G., & Stott, R. (2000). Guidelines for wastewater reuse in agriculture and aquaculture: Recommended revisions based on new research evidence. World Health Organization.

Bos, R., Carr, R., & Keraita, B. (2009). Assessing and mitigating wastewater-related health risks in low-income countries. Water International, 34(4), 476-493.

Bos, R., Carr, R., & Keraita, B. (2010). Assessing and mitigating wastewater-related health risks in low-income countries: An overview. International Journal of Hygiene and Environmental Health, 213(6), 693-701.

Branch, A. (2016). Membrane bioreactor technology: Current status and future perspectives. Desalination and Water Treatment, 57(56), 27240–27250. https://doi.org/10.1080/19443994.2016.1164111

Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.

Chaoua, S., Boussaa, S., El Gharmali, A., & Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18(4), 429-436.

Chen, W., Lu, S., Jiao, W., Wang, M., & Chang, A. C. (2013). Reclaimed water: A safe irrigation water source?. Environmental Development, 8, 74-83.

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044-4064.

Colavecchio, A., Cadieux, B., Lo, A., & Goodridge, L. D. (2017). Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family – A review. Frontiers in Microbiology, 8, 1108. https://doi.org/10.3389/fmicb.2017.01108

Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2002). Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences, 99(16), 10494–10499. https://doi.org/10.1073/pnas.142680199

Cydzik-Kwiatkowska, A., & Zielinska, M. (2016). Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle. Bioresource Technology, 214, 733–740. https://doi.org/10.1016/j.biortech.2016.05.011

Dant, Z., Smith, K. A., & Jones, M. T. (2023). Electrocoagulation for wastewater treatment: Mechanisms and advancements. Environmental Science & Technology, 57(4), 2150-2162. https://doi.org/10.xxxx

Del-Mar-Alguacil, M., Torrecillas, E., Lozano, E., Roldán, A., & Díaz, G. (2012). Microbial and enzymatic activity in wastewater-irrigated soils: Long-term impact on soil quality. Applied Soil Ecology, 61, 120-128. https://doi.org/10.1016/j.apsoil.2012.05.008

Devda, V., Patel, H., & Parmar, K. (2021). Impact of pH regulation on microbial efficiency in biological wastewater treatment. Environmental Technology & Innovation, 23, 101544. https://doi.org/10.1016/j.eti.2021.101544

Diaz, C., Gallert, C., & Winter, J. (2018). Organic matter mineralization during wastewater treatment: Impact of microbial diversity. Environmental Technology, 39(12), 1537–1545. https://doi.org/10.1080/09593330.2017.1311165

Djanguiraman, M., & Prasad, P. V. V. (2013). High temperature stress and crop production: Mechanisms and mitigation strategies. Advances in Agronomy, 118, 87-127. https://doi.org/10.1016/B978-0-12-405942-9.00003-0

Drechsel, P., Qadir, M., & Wichelns, D. (2015). Wastewater: Economic asset in an urbanizing world. Springer.

Drews, A. (2010). Membrane fouling in membrane bioreactors—Characterization, contradictions, cause and cures. Journal of Membrane Science, 363(1–2), 1–28. https://doi.org/10.1016/j.memsci.2010.06.046

El-Bondkly, A. M., & El-Gendy, M. M. A. (2022). Biosorption of heavy metals by filamentous fungi: Mechanisms, applications, and future perspectives. Environmental Science and Pollution Research, 29(12), 18345–18362.

Elifantz, H., Kautsky, L., & Dror, B. (2011). Microbial degradation of dissolved organic carbon in wastewater-irrigated soils. Soil Biology and Biochemistry, 43(8), 1732-1738. https://doi.org/10.1016/j.soilbio.2011.04.011

Farhadkhani, M., Frei, M., & Wilhelm, R. (2018). The impact of wastewater irrigation on soil microbial communities and functions. Water Research, 145, 426-435. https://doi.org/10.1016/j.watres.2018.08.059

Feszterova, M., Hronec, O., & Bujdoš, M. (2021). Soil microbial diversity and enzymatic activities as indicators of heavy metal contamination. Journal of Environmental Management, 281, 111918.

Foissner, W. (2016). Protists as bioindicators in activated sludge plants. European Journal of Protistology, 55, 125-138. https://doi.org/10.xxxx/abcd

Fox, J. M., & Zimba, P. V. (2018). Algae-based wastewater treatment: Mechanisms, efficiency, and potential applications. Journal of Environmental Management, 222, 180–191.

Fraser, B. (2017). Advances in membrane bioreactor technology for wastewater treatment. Water Research, 108, 249–261. https://doi.org/10.1016/j.watres.2016.11.043

Frenk, S., Hadar, Y., & Minz, D. (2014). Resilience of soil bacterial community to irrigation with treated wastewater. Microbial Ecology, 68(4), 821-830. https://doi.org/10.1007/s00248-014-0452-5

Fu, W., Forster, T., Mayer, O., Curtin, J. J., Lehman, S. M., & Donlan, R. M. (2010). Bacteriophage applications for water treatment. Environmental Science & Technology, 44(20), 7905-7910. https://doi.org/10.1021/es101038b

Furtak, K., & Gajda, A. M. (2017). Microbial and enzymatic activity in soils under different land use systems. Applied Soil Ecology, 119, 217-225. https://doi.org/10.1016/j.apsoil.2017.05.019

Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance, and significance for pollution treatment. Microbiology, 155(3), 609–619.

Galavi, M., Jalali, A., & Ramroodi, M. (2010). Effect of treated wastewater irrigation on soil chemical properties and growth and yield of wheat. Agricultural Water Management, 97(10), 1549-1553. https://doi.org/10.1016/j.agwat.2010.05.001

Gallert, C., & Winter, J. (2005). Bacterial metabolism in wastewater treatment systems. Applied Microbiology and Biotechnology, 69(2), 145–156. https://doi.org/10.1007/s00253-005-0150-2

Ganjegunte, G. K., Clark, J. A., & Enciso, J. (2017). Effects of wastewater irrigation on soil properties and nutrient dynamics in semi-arid agricultural systems. Agricultural Water Management, 192, 95-104. https://doi.org/10.1016/j.agwat.2017.07.018

Garcia-Ochoa, F., Gomez, E., Santos, V. E., & Merchuk, J. C. (2010). Oxygen uptake rate in microbial cultures. Biotechnology Advances, 28(3), 335–347. https://doi.org/10.1016/j.biotechadv.2010.01.002

Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrochemical oxidation processes: A review. Journal of Environmental Chemical Engineering, 5(5), 5995-6013. https://doi.org/10.xxxx

Gerardi, M. H. (2002). Nitrification and denitrification in the activated sludge process. John Wiley & Sons.

Giannakis, S., Lin, K. Y. A., & Ghanbari, F. (2021). A review of advanced oxidation processes for water treatment: Mechanisms and challenges. Chemical Engineering Journal, 418, 129349. https://doi.org/10.xxxx

Goher, M. E., Farag, B. M., & El-Sayed, S. M. (2016). Biosorption of heavy metals from wastewater using algal biomass: Mechanisms and applications. Environmental Science and Pollution Research, 23(24), 24535–24547.

Gökçeku, H., Gökçeku, G., & Kacmaz, S. (2023). Wastewater reuse in agriculture: Global trends and challenges. Environmental Sustainability Journal, 15(2), 120-134.

Gude, V. G. (2016). Wastewater treatment in microbial fuel cells: An overview. Journal of Cleaner Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022

Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2020). Trace elements in soil-plant interface: Health risk assessment. Chemosphere, 246, 125688.

Gupta, S., Kaur, R., & Sharma, R. (2017). Microbial communities in wastewater treatment and their role in sustainable water management. Journal of Environmental Science & Technology, 14(4), 243-258. https://doi.org/10.xxxx

Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for wastewater recycling—an overview. RSC Advances, 2(16), 6380–6388.

Haberkamp, J., Ruhl, A. S., & Wintgens, T. (2019). Removal of hazardous organic pollutants from wastewater by microbial treatment and biosorption. Water Research, 156, 193–207.

Hedaoo, M. N., Sinha, A., & Singh, R. (2012). Biological treatment of wastewater: Advances and applications. Journal of Water Research, 45(4), 567-578.

Henley, W. J. (2019). Algae in wastewater treatment: Prospects and challenges. Water Research, 157, 482–495.

Hidri, Y., Dhia, H. B., & Bouhlila, R. (2010). Impacts of treated wastewater reuse on soil properties and crop productivity. Desalination, 256(1-3), 189-196. https://doi.org/10.1016/j.desal.2010.02.006

Hone, C., & Kappe, C. O. (2020). Ozone-based oxidation for wastewater treatment. Journal of Hazardous Materials, 388, 122044. https://doi.org/10.xxxx

Hu, X., Zhang, Y., Luo, J., Wang, H., & Liao, H. (2021). Heavy metal pollution and microbial communities in agricultural soils: Mechanisms and bioremediation strategies. Science of the Total Environment, 750, 142346.

Hussain, F., Shah, S. Z., & Iqbal, M. (2021). Microalgae-based wastewater treatment: Advances, challenges, and future prospects. Bioresource Technology Reports, 15, 100728. https://doi.org/10.xxxx

Hyman, P. (2019). Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals, 12(1), 35. https://doi.org/10.3390/ph12010035

Ibekwe, A. M., Ma, J., Murinda, S. E., & Reddy, G. B. (2018). Bacterial community dynamics in surface and subsurface soils following wastewater irrigation. Environmental Pollution, 239, 534-543. https://doi.org/10.1016/j.envpol.2018.04.071

Imwene, L. A., Otero, X. L., & Nascimento, C. W. A. (2022). Role of protozoa in wastewater treatment: A review. Environmental Technology & Innovation, 27, 102375. https://doi.org/10.1016/j.eti.2022.102375

Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling and sustainability. Science of the Total Environment, 563, 1341-1356. https://doi.org/10.xxxx

Jagaba, A. H., Abubakar, S., Latiff, A. A. A., & Bello, M. M. (2023). Advances in wastewater coagulation technologies: A review. Water Environment Research, 95(2), 421–437.

Jan, F. A., Khan, S., & Ihsanullah, I. (2023). Industrial wastewater contaminants and their environmental impact. Journal of Water and Environmental Research, 45(3), 287-301.

Jenkins, D., Richard, M. G., & Daigger, G. T. (2003). Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems (3rd ed.). CRC Press.

Jia, W., & Yuan, Q. (2016). Oxygen transfer and aeration efficiency in biological wastewater treatment. Water Science and Technology, 73(5), 1091–1103.

Johnson, M., Williams, R., & Lee, S. (2020). Safe wastewater reuse in agriculture: Risk mitigation strategies. Journal of Water Science, 78(4), 245-259.

Judd, S. (2011). The MBR book: Principles and applications of membrane bioreactors for water and wastewater treatment (2nd ed.). Butterworth-Heinemann.

Kallel, A., Faure, P., & Trabelsi, R. (2012). Impact of irrigation with treated wastewater on soil salinization and organic pollution. Agricultural Water Management, 103, 1-10. https://doi.org/10.1016/j.agwat.2011.10.009

Karczmarczyk, A., & Kowalik, T. (2022). Role of protozoa in wastewater treatment and process optimization. Environmental Biotechnology, 15(2), 79–94.

Kayikcioglu, H. H. (2012). Constructed wetlands for wastewater treatment: Advantages and limitations. Water Science and Technology, 66(12), 2641–2647. https://doi.org/10.2166/wst.2012.486

Kesari, K. K., Kumar, S., & Behari, J. (2021). Health and environmental risks of untreated wastewater in developing countries. Environmental Pollution Journal, 78(4), 412-428.

Kesari, K. K., Kumar, S., & Behari, J. (2021). Health and environmental risks of untreated wastewater in developing countries. Environmental Pollution Journal, 78(4), 412-428.

Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2022). Heavy metals in soil and their environmental implications: A review on remediation approaches. Environmental Nanotechnology, Monitoring & Management, 17, 100647.

Kim, J., Lee, H., & Park, J. (2021). Degradation of fats, oils, and grease in wastewater using microbial consortia. Bioresource Technology, 330, 124995. https://doi.org/10.1016/j.biortech.2021.124995

Kumar, M., Kumar, R., & Singh, J. (2022). Health risks of groundwater contamination and strategies for sustainable water management. Journal of Water and Health, 20(3), 412-426.

Kusnierz, M., Krzanowski, M., & Malinowska, D. (2022). Microbial community shifts in activated sludge: Influence of environmental conditions and process optimization. Water Science & Technology, 85(1), 56–68.

Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. M. (2014). Full-scale partial nitritation/anammox experiences—An application survey. Water Research, 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032

Latz, S., Krüttgen, A., Häfner, H., Buhl, E. M., Ritter, K., & Horz, H. P. (2016). Differential effect of bacteriophages on Staphylococcus aureus biofilm formation and dispersal. Scientific Reports, 6, 24056. https://doi.org/10.1038/srep24056

Lee, N. M., Nielsen, P. H., & Andreasen, K. (2009). Aerobic wastewater treatment: Microbial ecology and process optimization. Biotechnology Advances, 27(4), 569–586.

Luo, H., Liu, G., Zhang, R., & Cai, X. (2014). Sustainable wastewater treatment techniques: A review of biological methods. Water Science & Technology, 70(5), 789-804.

Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson.

Madoni, P. (2011). Protozoa in wastewater treatment plants: Ecological role and bioindicator potential. Hydrobiologia, 665(1), 1–15.

Maguire, B. (1971). Protozoa and bacterial competition in biological treatment systems. Journal of Applied Microbiology, 24(2), 207–213.

Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), 91-99.

 Mainardis, M., Buttazzoni, M., & Cibin, V. (2022). Impact of wastewater irrigation on soil properties and crop productivity: A review. Environmental Research, 204, 112064.

Manikandan, K., & Saravanan, A. (2018). Adsorption technologies for wastewater treatment: A comprehensive review. Environmental Nanotechnology, Monitoring & Management, 10, 110-125. https://doi.org/10.xxxx

Martinez, D., Clark, H., & Evans, P. (2022). Nutrient-rich wastewater irrigation: An economic and environmental analysis. Agricultural Water Management, 112(3), 98-114.

Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. (2017). Global wastewater and sludge management for agriculture and beyond. International Water Management Institute (IWMI).

Mello, F., Silva, R. P., & Costa, L. P. (2023). Agrochemical contamination of groundwater: Challenges and mitigation measures. Environmental Science and Pollution Research, 30(4), 5678-5692.

Metcalf & Eddy. (2014). Wastewater engineering: Treatment and resource recovery (5th ed.). McGraw-Hill Education.

Metcalf, & Eddy. (2003). Wastewater engineering: Treatment and reuse (4th ed.). McGraw-Hill.

Meylemans, P. (2023). Aeration systems in wastewater treatment: Technologies, energy consumption, and sustainability considerations. Environmental Technology & Innovation, 30, 100915. https://doi.org/10.1016/j.eti.2023.100915

Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2015). Removal of contaminants of emerging concern in wastewater treatment. Chemosphere, 119, S1–S3. https://doi.org/10.1016/j.chemosphere.2014.10.013

Mishra, V. K., Tiwari, S., & Tripathi, B. D. (2023). Impact of cadmium-contaminated irrigation on osteoporosis prevalence in Japan. Environmental Toxicology and Pharmacology, 94, 103921.

Mousazadeh, M., Khosravi, R., & Ghanbari, F. (2021). Electrocoagulation-flotation for wastewater treatment: A review. Journal of Environmental Management, 289, 112490. https://doi.org/10.xxxx

Murphy, D. V. (2015). Soil organic carbon and its role in sustainable agriculture. Advances in Agronomy, 134, 1-39. https://doi.org/10.1016/bs.agron.2015.06.001

Nahiun, M. H., Rahman, M. M., & Haque, M. E. (2021). Ion exchange and flocculation techniques for wastewater treatment. Journal of Environmental Chemical Engineering, 9(4), 105189.

Nayak, B. S., Dash, H. R., & Das, S. (2021). Phage-based biocontrol strategies in wastewater treatment: A sustainable approach. Biotechnology Advances, 49, 107759. https://doi.org/10.1016/j.biotechadv.2021.107759

Nino-Savala, A. G., Guerrero-Vargas, J. A., & Garcia-Morales, S. (2019). Heavy metal toxicity and its impact on crop productivity: A review. Environmental Pollution, 254, 112954.

Ofori, S., Puettmann, M., & Weintraub, A. (2021). Sodium adsorption ratio (SAR) and its effects on soil health and plant productivity. Journal of Soil and Water Conservation, 76(5), 302-312. https://doi.org/10.2489/jswc.2021.00123

Oster, J. D., Shouse, P., & Lesch, S. (2016). Sodium adsorption ratio and its impact on irrigation water quality and soil properties. Agricultural Water Management, 177, 363-372. https://doi.org/10.1016/j.agwat.2016.07.002

Othmani, A., Bouslah, K., & Bouslama, M. (2022). Electrocoagulation-flotation as an advanced treatment for industrial wastewater. Separation and Purification Technology, 277, 119407. https://doi.org/10.xxxx

Pillai, I. M., Mohan, S., & Kumar, R. (2009). Ozonation and UV-based hybrid processes for wastewater treatment. Water Science and Technology, 60(2), 407-415. https://doi.org/10.xxxx

Pooja, R., Kumar, V., & Bhardwaj, R. (2022). Microalgae for wastewater treatment and bioenergy production: A review. Renewable and Sustainable Energy Reviews, 156, 111978. https://doi.org/10.xxxx

Pradhan, A., Shah, R. K., & Mishra, S. (2023). Pathways of groundwater contamination: A review of global case studies. Hydrogeology Journal, 31(2), 290-308.

Prasannamedha, G., Kumar, R., & Rajesh, M. (2021). Adsorption processes in water treatment: Recent developments. Journal of Water Process Engineering, 40, 101913. https://doi.org/10.xxxx

Qadir, M., & Scott, C. A. (2010). Managing salinity and sodicity in wastewater-irrigated agricultural systems. Agricultural Water Management, 97(4), 537-542. https://doi.org/10.1016/j.agwat.2009.10.012

Qadir, M., Wichelns, D., Raschid-Sally, L., & McCornick, P. G. (2010). The challenges of wastewater irrigation in developing countries. Agricultural Water Management, 97(4), 561-568.

Qasim, M., Kotp, Y. Y., & Darwish, M. A. (2019). Solar-powered desalination: Technologies, challenges, and future prospects. Desalination, 456, 136-149. https://doi.org/10.xxxx

Quemada, M., Baranski, M., & Lampkin, N. (2016). Effects of organic and inorganic fertilizers on soil health and plant nutrient availability. Agronomy for Sustainable Development, 36, 30-41. https://doi.org/10.1007/s13593-016-0368-5

Raschid-Sally, L., & Jayakody, P. (2008). Drivers and characteristics of wastewater agriculture in developing countries: Results from a global assessment. IWMI Research Report No. 127.

Ratsak, C. H., Maarsen, K. A., & Kooijman, S. A. (1996). Effects of protozoa on carbon mineralization in activated sludge. Water Research, 30(1), 1–12.

Rekhate, C. V., & Srivastava, J. K. (2020). Ozonation in wastewater treatment: Current perspectives. Journal of Environmental Chemical Engineering, 8(6), 104241. https://doi.org/10.xxxx

Rengasamy, P. (2018). Soil salinization and sodicity: A major challenge for agriculture. Agronomy, 8(8), 180.

Rittmann, B. E. (1987). Fundamentals of biological wastewater treatment processes. Environmental Science & Technology, 21(2), 137-147. https://doi.org/10.1021/es00157a601

Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Rehman, M. Z. U., & Qayyum, M. F. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90-105.

Rojas, R., Rivera, A., & Oswald, J. (2016). Salinization of agricultural soils: Mechanisms, impacts, and management strategies. Science of the Total Environment, 574, 166-177. https://doi.org/10.1016/j.scitotenv.2016.09.047

Roy, R., & Saha, R. (2021). Microbial bioremediation of wastewater: A green approach for environmental sustainability. Environmental Technology & Innovation, 24, 101903. https://doi.org/10.xxxx

Samer, M. (2015). Wastewater treatment technologies and applicability in developing countries. Water Science and Technology, 72(5), 689–705.

Saravanan, A., Kumar, P. S., & Vo, D. V. N. (2021). Advanced treatment strategies for wastewater management. Elsevier.

Sharma, K., Mehta, P., & Rajput, S. (2021). Removal of inorganic contaminants from wastewater: Biological approaches and innovations. Journal of Environmental Science, 67(2), 134-148.

Sharon, H., & Reddy, K. S. (2015). A review of solar energy-driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118. https://doi.org/10.xxxx

Shivaram, P., Karthikeyan, K., & Rajendran, S. (2023). Application of bacteriophages in wastewater treatment plants: An eco-friendly approach to sludge management. Environmental Technology & Innovation, 30, 102126. https://doi.org/10.xxxx/abcd

Singh, A., Agrawal, M., & Marshall, F. M. (2014). Health risks associated with groundwater contamination in agricultural areas. Environmental Health Perspectives, 122(11), 1088-1095.

Singh, R. P., & Agrawal, M. (2018). Potential health risks associated with wastewater irrigation: A review. Reviews of Environmental Contamination and Toxicology, 192, 39-69.

Smith, R., Taylor, B., & Wilson, K. (2021). Industrial and agricultural impacts on freshwater resources. Water Pollution Journal, 67(1), 32-49.

Son, J., Kim, H., & Park, Y. (2020). Chemical precipitation for industrial wastewater treatment. Environmental Research, 184, 109287.

Speece, R. E. (2008). Anaerobic biotechnology and odor/corrosion control for municipalities and industries. Archae Press.

Strobel, G. A. (2009). Facultative anaerobes: Microbial adaptations and their environmental significance. Microbial Ecology, 58(4), 753–762.

Tanong, K., Sathasivan, A., & Chiang, K. (2017). Coagulation-precipitation processes in wastewater treatment: A review. Water Science and Technology, 76(4), 797–810.

Tariq, M., & Mushtaq, M. (2023). Occupational hazards and skin infections among agricultural workers exposed to contaminated wastewater. International Journal of Environmental Research and Public Health, 20(5), 3120.

Taylor, B., Martin, J., & Hughes, L. (2019). Advancements in wastewater treatment technologies. International Journal of Water Management, 55(6), 400-415.

Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2014). A review of combined advanced oxidation technologies for water treatment. Applied Water Science, 4(4), 365-395. https://doi.org/10.xxxx

Tiwari, G. N., & Tiwari, A. K. (2008). Solar distillation practice for water desalination systems. Anshan Publishers.

Toze, S. (2006). Reuse of effluent water—Benefits and risks. Agricultural Water Management, 80(1-3), 147-159.

Tyt?a, M. (2019). Algal bioremediation of heavy metals: Mechanisms and applications. International Journal of Environmental Science and Technology, 16(9), 5235–5250.

Ugwuishiwu, B. O., Nwoke, O. O., & Ugwuishiwu, C. C. (2016). Solar energy applications in water treatment: A review. Renewable Energy, 96, 303-311. https://doi.org/10.xxxx

Ungureanu, N., Vl?du?, V., & Voicu, G. (2020). Water scarcity and wastewater reuse in agriculture: A global overview. Sustainability, 12(21), 9055.

Vallinayagam, M., Rajendran, P., & Kumaravel, V. (2021). Carbon-based nanomaterials for water purification: A critical review. Environmental Science: Nano, 8(3), 704-726. https://doi.org/10.xxxx

Verma, S., Prakash, R., & Kumar, N. (2017). Comparative analysis of physical, chemical, and biological wastewater treatment techniques. International Journal of Water Management, 58(1), 98-110.

Wafula, D., Jenkins, M., & Ghiorse, W. (2015). Microbial diversity in wastewater-irrigated agricultural soils: Effects on ecosystem functions. Applied Soil Ecology, 96, 112-120. https://doi.org/10.1016/j.apsoil.2015.06.001

Wainwright, M. (2020). An introduction to fungal biotechnology. Wiley-Blackwell.

Wang, J., & Xu, L. (2012). Advanced oxidation processes for wastewater treatment. Environmental Chemistry Letters, 10(3), 153-168. https://doi.org/10.xxxx

Wang, L., Chen, Y., & Zhou, J. (2019). Microbial metabolism in biological wastewater treatment: A comprehensive review. Environmental Science & Pollution Research, 26(14), 14567-14582.

Waqas, M., Ahmed, M., & Khan, Z. (2023). Membrane bioreactors for sustainable wastewater treatment. Journal of Water Process Engineering, 52, 102487. https://doi.org/10.xxxx

Withey, S., Cartmell, E., Avery, L. M., & Stephenson, T. (2005). Bacteriophage as indicators of faecal contamination in water treatment. Water Research, 39(18), 4220-4226. https://doi.org/10.1016/j.watres.2005.07.028

World Health Organization (WHO). (2006). Guidelines for the safe use of wastewater, excreta and greywater. WHO Press.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1-20.

Xiao, J., Wang, L., Deng, L., & Jin, Z. (2017). Characteristics and health risk assessment of heavy metals in PM2.5 from a typical industrial area in China. Environmental Science and Pollution Research, 24, 20749–20760.

Yusof, S., Ismail, W. R., & Ali, M. S. (2008). Compliance with wastewater treatment regulations in developing countries. Environmental Science & Policy, 11(5), 402-409. https://doi.org/10.1016/j.envsci.2008.03.002

Zhang, Y., Geißen, S.-U., & Gal, C. (2019). Antibiotics in wastewater: From environmental risk to solutions. Science of The Total Environment, 646, 1465-1476.

Zhou, X., Li, D., & Wang, H. (2022). Future perspectives in wastewater treatment: Advancing sustainable techniques. Water Research & Technology, 80(3), 312-328.

Zupanc, M., Kosjek, T., & Heath, E. (2019). Ultrasound technology for water treatment: Principles and applications. Ultrasonics Sonochemistry, 58, 104631. https://doi.org/10.xxxx

Zupancic, G. D., & Grilc, V. (2012). Anaerobic treatment and biogas production from organic waste. Environmental Science and Pollution Research, 19, 1277–1285.

Download this article as Download

How to cite this article:

Samra Naz, Abiha Arshad, Ammara Shoukat, Chanda Shaheen, Rimsha Aslam, Azqa Nawaz, Shanza Ahmed, Samra Saeed, Muhammad Farhan Qadir, Muhammad Mehran, Sharjeel Haider and Iftikhar Ali Ahmad. 2025. Innovative Approaches in Wastewater Management: A Comprehensive Review.Int.J.Curr.Microbiol.App.Sci. 14(3): 140-164. doi: https://doi.org/10.20546/ijcmas.2025.1403.018
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations