![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Low temperature adaptation of a thermophilic starter Streptococcus thermophilus NCDC74 (St74) (routinely used for production of ‘Dahi’ (yoghurt) in Indian Dairy Industries) was analysed by physiology and proteomic approach. Cold shock at 20?C for 2, 4 and 6h to St74 demonstrated a factorial increase in freeze-thaw survival of 80%, 800% and 250% respectively, compared to the control (42?C). Proteomic analysis of cold-induced cells at 20?C for 6h revealed 23 spots, which were differentially expressed. Of the differentially expressed proteins, 14 and 9 were of low (< 10 kDa) and high molecular weight (> 10 kDa) respectively. Peptide mass finger printing (PMF) analysis revealed that spot1 (MW ~7.2 kDa) matched with cold shock protein A (cspA) fragment of Lactobacillus casei (Mowsescore: 164) and spot3 (MW ~7.2 kDa) matched with csp fragment of Leuconostoc mesenteroides, thus suggesting their strong role in cryoprotection. General stress proteins induced during cold shock include lp_0704 (MW 8 kDa) from L. plantarum, dnaA from L. monocytogenes and acetolactate synthases of B. cereus. Two repressed spots (5 and 6) include chorismate synthase of S. epidermidis, t1pA from C. tetani (spot5), and ABC transporter from C. perfringens respectively (spot6). Cold inducible proteins identified in high MW include glyceraldehyde-3-phosphate dehydrogenase, parvulin-like peptidyl-prolyl isomerase, (PrsA), PTS (phosphotransferase) system and cIp protease, cIpB, UTP-glucose-1-phosphate uridylyltransferase among the repressed spots. Results revealed increased freeze thaw survival capacity after adaptation to low temperature as well as identification of several proteins that include csps, general stress proteins and repressed proteins in St74.
Atlung, T. & Hansen F.G. (1999). Low-Temperature-induced DnaA protein synthesis does not change initiation mass in Escherichia coli K-12. J Bacteriol 181, 5557–5562. https://doi.org/10.1128/jb.181.18.5557-5562.1999
Baranyi, J. & Roberts, T.A. (1994). A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23, 277–294. https://doi.org/10.1016/0168-1605(94)90157-0
Beckering, C. L., Steil, L., Weber, M.H., Völker, U. & Marahiel, M.A. (2002). Genome wide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184, 6395–6402. https://doi.org/10.1128/jb.184.22.6395-6402.2002
Blum, H., Beier, H. & Gross. H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99. https://doi.org/10.1002/elps.1150080203
Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S. Lapidus, A., Goltsman, E., Mazur, M. & other authors (2004). Complete genome sequence and comparative analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22, 1554–1558. https://doi.org/10.1038/nbt1034
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye l binding. Anal Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cross, M.I., Mortensen, R.I., Kudsk, J. & Gill, H.I. (2002). Dietary intake of Lactobacillus rhamnosus HN001 enhances production of both Th1 and Th2 cytokines in antigen primed mice. Medical Microbiol and Immunol 191, 49–53. https://doi.org/10.1007/s00430-002-0112-7
Goodchild, A., Saunders, N.F.W., Ertan, H., Raftery, M., Guilhaus, M., Curmi, Paul M.G. & Cavicchioli, R. (2004). A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53, 309–321. https://doi.org/10.1111/j.1365-2958.2004.04130.x
Gottesman, S., Maurizi, M.R. & Wickner, S. (1997). Regulatory subunits of energy-dependent proteases. Cell 91, 435–438. https://doi.org/10.1016/s0092-8674(00)80428-6
Graumann, P., Schroder, K., Schmid, R. & Marahiel. M.A. (1996). Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178, 4611–4619. https://doi.org/10.1128/jb.178.15.4611-4619.1996
Herrler, M., Bang, H. & Marahiel. M.A. (1994). Cloning and characterization of ppiB, a Bacillus subtilis gene which encodes a cyclosporine A-sensitive peptidyl-prolyl cis-trans isomerase. Mol Microbiol 11, 1073–1083. https://doi.org/10.1111/j.1365-2958.1994.tb00384.x
Jan, G., Rouault, A. & Maubois, J.L. (2000). Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80, 325–336. https://dx.doi.org/10.1051/lait:2000128
Jones, P.G. & Inouye, M. (1994). The cold shock response—a hot topic. Mol Microbiol 11, 811–818. https://doi.org/10.1111/j.1365-2958.1994.tb00359.x
Kim, Y., Kim, J. & Kang, H. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. The Plant Journal 42, 890–900. https://doi.org/10.1111/j.1365-313x.2005.02420.x
Kruger, E. & Hecker, M. (1998). The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180, 6681–6688. https://doi.org/10.1128/jb.180.24.6681-6688.1998
Laemmli, U.K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0
Lee, S.J., Xie, A., Jiang, W., Etchegaray, J.P., Jones, P.G. & Inouye, M. (1994). Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11, 833–839. https://doi.org/10.1111/j.1365-2958.1994.tb00361.x
Leverrier, P., Dimova, D., Pichereau, V., Auffray, Y., Boyaval, P. & Jan, G. (2003). Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69, 3809–3818. https://doi.org/10.1128/AEM.69.7.3809-3818.2003
Luesink, E.J., Beumer, C.M.A., Kuipers, O.P. & De Vos, W.M. (1999). Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J Bacteriol 181, 764–771. https://doi.org/10.1128/jb.181.3.764-771.1999
Perrin, C., Guimont, C., Bracquart, P. & Gaillard, J.L. (1999). Expression of a new cold shock protein of 21.5 kDa and of the major cold shock protein by Streptococcus thermophilus after cold shock. Curr Microbiol 39, 342–347. https://doi.org/10.1007/s002849900469
Porankiewicz, J. & Clarke, A.K. (1997). Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 179, 5111–5117. https://doi.org/10.1128/jb.179.16.5111-5117.1997
Puertollano, E., Puertollano, M.A., Cruz-Chamorro, L., Alvarez de Cienfuegos, G., Ruiz-Bravo, A. & De Pablo, M.A. (2008). Orally administered Lactobacillus plantarum reduces pro-inflammatory interleukin secretion in sera from Listeria monocytogenes infected mice. Brit J Nutri 99, 819–825. https://doi.org/10.1017/s0007114507832533
Ratkowsky, D.A., Olley, J., McMeekin, T.A. & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149, 1–5. https://doi.org/10.1128/jb.149.1.1-5.1982
Somkuti, G.A. & Steinberg, D.H. (1999). Distribution of plasmid-borne stress protein genes in Streptococcus thermophilus and other lactic acid bacteria. Curr Microbiol 38, 43–47. https://doi.org/10.1007/pl00006770
Tripathy, P.P. (2006). Studies on Stress Response in Thermophilic starters. Ph.D Thesis, 76.
Verneuil, A., Pichereau V., Auffray, Y., Ehrlich, D. & Maguin, E. (2005). Proteomics characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5,1-13.
Vitikainen, M., Lappalainen, I., Seppala, R., Antelmann, H., Boer, H., Taira, S., Savilahti, H., Hecker, M., Vihinen, M., Sarvas, M. & Kontinen, V.P. (2004). Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem, 279, 19302–19314. https://doi.org/10.1074/jbc.m400861200
Wawrzynow, A., Banecki, B. & Zylicz, M., 1996. The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21, 895–899. https://doi.org/10.1046/j.1365-2958.1996.421404.x
Weinberg, M.V., Schut, G.J., Brehm, S. Datta, S. & Adams, M.W.W. (2005). Cold shock of a hyperthermophilic archaeon Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane bound glycoproteins. J of Bacteriol, 187, 336–348. https://doi.org/10.1128/jb.187.1.336-348.2005
Wickner, S. & Maurizi, M.R. (1999). Here’s the hook: similar substrate binding sites in the chaperone domains of Clp and Lon. Proc Natl Acad Sci U S A, 96, 8318–8320. https://doi.org/10.1073/pnas.96.15.8318
Wijtzes, T., de Wit, J.C., Huis, I., Van’t, R. & Zwietering, M.H. (1995). Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Appl Environ Microbiol 61, 2533–2539. https://doi.org/10.1128/aem.61.7.2533-2539.1995
Wouters, J.A., Rombouts, F.M., deVos, W.M., Kuipers, O.P. & Abee, T. (1999). Cold shock proteins and low temperature response of Streptococcus thermophilus CNRZ302. Appl Environ Microbiol 65, 4436–4442. https://doi.org/10.1128/aem.65.10.4436-4442.1999
Wouters, J.A., Sanders, J.W., Kok, J., deVos, W.M., Kuipers, O.P. & Abee, T. (1998). Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144, 2885–2893. https://doi.org/10.1099/00221287-144-10-2885
Yura, T., Nakahigashi, K. & Kanemori, M. (1996). Transcriptional regulation of stress-inducible genes in procaryotes. EXS 77, 165–181. https://doi.org/10.1007/978-3-0348-9088-5_11
O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007-21.
![]() |
![]() |
![]() |
![]() |
![]() |