![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
The area of Northeast coast of Qatar has been actively engaged in industrial oil and gas activities for many years. It is part of the northern basin of underground water and is affected by many environmental and industrial factors, such as the intrusion of polluted saline seawater, which could greatly impact the levels of inorganic and organic components of the land. Moreover, industrial expansions could add more impacts to the pollution levels in this area. The high salinity levels in the sabkha of this area are attributed to ions that are normally found in saline patches, such as sodium, chloride, and calcium. However, other heavy elements are found, such as boron and strontium. This study discusses the role of the industrial activities in the accumulation of these elements in the soil. Analyses show that the sabkha of Al Ghariya contains four Bacillus species: B. vallismortis, B. subtilis, B. licheniformis, and B. cereus (reliability codes: 1.80, 1.91, 1.99, and 2.01, respectively). Among these species, B. licheniformis is identified as a new record of polyextremophiles that are adapted to various environmental conditions. The possible roles of these Bacillus spp. at the polluted area are discussed. Some fungi genera were also identified, and the results reflect how the harsh environment negatively impacts microbial counts and attract more candidates for bioremediation and phytoremediation. The biological roles of halophytes and their associated microorganisms in these saline lands are discussed. The gene bank of these organisms offers opportunities for further studies to develop a biological system capable of remediating and sustaining agricultural lands, as well as improving the production of many biological components in health, agriculture, and the economy.
Abdel-Bari, E. M. 2012. The flora of Qatar, the dicotyledons, the monocotyledons; Vol. 1, 2. Environmental Studies Centre, Qatar University, Doha, Qatar, ISBN. 99921-786-7-1.
Abdel-Bari, E. M., Yasseen, B. T. and Al-Thani, R. F. 2007. Halophytes in the state of Qatar. Environmental Studies Center, University of Qatar, Doha, Qatar, ISBN.99921-52-98-2.
Abdelsamad, R., Al Disi, Z., Abu Dieyeh, M., et al., 2022. Evidencing the role of carbonic anhydrase in the formation of carbonate minerals by bacterial strains isolated from extreme environments in Qatar. Heliyon 8 (10): e11151, https://doi.org/10.1016/j.heliyon.2022.e11151.
Abulfatih, H. A., Abdel-Bari, E. M., Alsubaey, A., et al., 2001. Vegetation of Qatar. Scientific and Applied Research Center (SARC), University of Qatar, Doha, Qatar.
Acharya, S. M., Chakraborty, R. and Tringe, S. G. 2020. Emerging trends in biological treatment of wastewater from unconventional oil and gas extraction. Front. Microbiol. 11: 569019, https://doi.org/10.3389/fmicb.2020.569019.
Adenan, S., Oja, J., Abdel-Fattah, T., et al., 2020. Linking Soil Chemical Parameters and Fungal Diversity in Qatar, (Poster). Graduate student Energy, Environment & Resource Sustainability. Qatar University Doha, Qatar, https://qspace.qu.edu.qa/handle/10576/16498/browse?type=publisher.
Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Public health statement for strontium. CAS#:7440-24-6. www.atsdr.cdc.gov/.
Ahmed, R. N., Sani, A., Ajijolakewu, A. K., et al., 2013. Soil screening for antibiotic - producing microorganisms. Advances in Environmental Biology 7 (1): 7-11, ISSN 1995-0756.
Al-Ansi, M. A., Abdel-Bari, E. M., Yasseen, B. T., et al., 2004. Coastal Restoration: Restoration of a coastal vegetation habitat at Ras Raffan industrial city, Final Report. SARC, University of Qatar, Doha, Qatar.
Al Disi, Z. A., Jaoua, S., Bontogmali, T. R. R., et al., 2017. Evidence of a role for aerobic bacteria in high magnesium carbonate formation in the evaporitic environment of Dohat-Faishakh Sabkha in Qatar. Front. Environ. Sci. 5: https://doi.org/10.3389/fenvs.2017.00001.
Alhaddad, F. A., Abu-Dieyeh, M. H., El-Azazi, E. M., et al., 2021. Salt tolerance of selected halophytes at the two initial growth stages for future management options. Scientific Reports 11: 10194.
Al-Khateeb, S. A. and Leilah, A. A. 2005. Heavy metals accumulation in the natural vegetation of Eastern Province of Saudi Arabia. J. Biol. Sci. 5: 707-712, https://doi.org/10.3923/jbs.2005.707.712.
Alkorta, I., Hernandez-Allica, J., Becerril, J. M., et al., 2004. Recent findings on the phytoremediation of soil contaminated with environmentally toxic heavy metals and metal loids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 3(1): 71-90, https://doi.org/10.1023/B:RESB.0000040059.70899.3d.
Al-Mohannadi, A. 2022-2023. Screening and isolation of Streptomyces bacteria from rhizosphere of two shrubs Caroxylon imbricata and Tamarisk aphylla, Al-Ghariyah sabkhas, Qatar, Final Report. Department of Biological and Environmental Sciences College of Arts and Sciences, Qatar University, BIOL497 Academic Year 2022 – 2023.
Alsafran, M., Usman, K., Al Jabri, H., et al., 2021. Ecological and health risks assessment of potentially toxic metals and metalloids contaminants: a case study of agricultural soils in Qatar. Toxics 9: 35, https://doi.org/10.3390/toxics9020035.
Alsafran, M., Usman, K., Rizwan, M., et al., 2024. The Carcinogenic and non-carcinogenic health risks of metal(oid)s bioaccumulation in leafy vegetables: A consumption advisory. Frontiers in Environmental Science 9:1, https://doi.org/10.3389/fenvs.2021.742269
Al-Siddiqi, A. and Dawe, R. A. 2007. Qatar’s oil and gas fields. J. Petroleum Geology 22 (4): 417-436, https://doi.org/10.1111/j.1747-5457.1999.tb00477.x.
Al-Sulaiti, M. Y., Al-Shaikh, I. M., Yasseen, B. T., et al., 2013. Ability of Qatar’s native plant species to phytoremediate industrial wastewater in an engineered wetland treatment system for beneficial water re-use. Qatar Found Ann Res Forum Proc ARC. 13: 2013 (1), EEO 010, https://doi.org/10.5339/qfarf.2013.EEO-010.
Al-Thani, R. F. and Yasseen, B. T. 2017. Halo-thermophilic bacteria and heterocyst cyanobacteria found adjacent to halophytes at Sabkhas – Qatar: preliminary study and possible roles. African Journal of Microbiology Research 11(34): 1346-1354.
Al-Thani, R. F. and Yasseen, B. T. 2018a. Solutes in native plants in the Arabian Gulf region and the role of microorganisms: future research. J. Plant Ecology 11 (5): 671-684, https://doi.org/10.1093/jpe/rtx066.
Al-Thani, R. F. and Yasseen, B. T. 2018b. Biological soil Crusts and extremophiles adjacent to native plants at Sabkhas and Rawdahs, Qatar: the possible roles. Frontiers in Environmental Microbiology 4 (2): 55-70, https://doi.org/10.11648/j.fem.20180402.13.
Al-Thani, R. F. and Yasseen, B. T. 2020. Phytoremediation of polluted soils and waters by native Qatari plants: future perspectives. Environmental Pollution 259 (2020): 113694, https://doi.org/10.1016/j.envpol.2019.113694
Al-Thani, R. F. and Yasseen, B. T. 2021a. Perspectives of future water sources in Qatar by phytoremediation: biodiversity at ponds and modern approach. Int. J. Phytoremediation 23 (8): 866-889, https://doi.org/10.1080/15226514.2020.1859986.
Al-Thani, R. F. and Yasseen, B. T. 2021b. Microbial ecology of Qatar, the Arabian Gulf: possible roles of microorganisms. Frontiers in Marine Science 8: 697269, https://doi.org/10.3389/fmars.2021.697269.
Al-Thani, R. F. and Yasseen, B. T. 2023. Monitoring the possible future risks of pollution on human health due to the expansion of oil and gas operations in Qatar. Environment and Pollution 12 (1): 12-52, https://doi.org/10.5539/ep. v12n1p12.
Al-Thani, R. F. and Yasseen, B. T. 2024. Methods using marine aquatic photoautotrophs along the Qatari coastline to remediate oil and gas industrial water. Toxics 12 (9): 625, https://doi.org/10.3390/toxics12090625.
Al-Yousef, M. 2023. Palygorskite, chlorite and illite minerals in the Dukhan Sabkha deposits, Qatar. Geol. Earth Mar. Sci. 5(1): 1–15, https://doi.org/10.31038/GEMS.2023512.
Armstad, S. 2020. Inverse Distance Weighting. Interpolation. https://geographyfieldwork.com/Inverse DistanceWeighting.htm.
Arredondo, G. and Bonomelli, C. 2023. Effect of three boron concentrations in soil on growth and physiology in sweet cherry trees. Plants (Basel) 12 (6): 1240, https://doi.org/10.3390/plants12061240.
Ashfaq, M. Y., Da’na, D. A. and Al-Ghouti, M. A. 2022. Application of MALDI-TOF MS for identification of environmental bacteria; a review. J. Environ. Manage. 305: 114359, https://doi.org/10.1016/j.jenvman.2021.114359.
Ashore, M. M. 1991. Sabkhas in the peninsula of Qatar-geomorphologic and geological and biological studies. Centre of Documentation and Humanitarian Studies, University of Qatar, Doha, Qatar.
Bañuelos, G. S., Centofanti, T., Zambrano, M. C., et al., 2022. Salsola soda as selenium biofortification crop under high saline and boron growing conditions. Front. Plant Sci. 13: 996502, https://doi.org/10.3389/fpls.2022.996502.
Bhupenchandra, I., Basumatary, A., Choudhary, A. K., et al., (2022). Elucidating the impact of boron fertilization on soil physico-chemical and biological entities under cauliflower-cowpea-okra cropping system in an Eastern Himalayan acidic Inceptisol. Front. Microbiol. 13: 996220, https://doi.org/10.3389/fmicb.2022.996220.
Bilen, S., Bilen., M. and Bardhan, S. 2011. The effects of boron management on soil microbial population and enzyme activities. African J Biotechnology 10 (27): 5311-5319, https://doi.org/10.5897/AJB10.1376.
Bizuye, A., Moges, F. and Andualem, B. 2013. Isolation and screening of antibiotic producing actinomycetes from soils in Gondar town, North West Ethiopia. Asian Pac. J. Trop. Dis. 3 (5): 375-381, https://doi.org/10.1016/S2222-1808(13)60087-0.
Bode, H. B. and Müller, R. 2003. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol. 132: 1153–1161, https://doi.org/10.1104/pp.102.019760.
Brdar-Jokanovi?, M. 2020. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 21 (4): 1424, https://doi.org/10.3390/ijms21041424.
Centofanti, T. and Bañuelos, G. 2015. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron. J. Environ. Mang. 157: 96-102.
Chapman, H. D. and Pratt, P. F. 1961. Methods of analysis for soils, plants, and waters. Div Agr Sci, University of California, California, Berkeley, USA.
Chen, Y. T., Wang, Y. and Yeh, K. C. 2017. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39: 66-72, https://doi.org/10.1016/j.pbi.2017.06.004.
Chenchouni, H. 2017. Edaphic factors controlling the distribution of inland halophytes in an ephemeral Salt Lake “Sabkha Ecosystem” at North African semi-arid lands. Science of the Total Environment 575: 660-671.
Czakó, M., Feng, X., He, Y., et al., 2005. Genetic modification of wetland grasses for phytoremediation. Z. Naturforsch C. J. Biosci. 60(3-4): 285-291, https://doi.org/10.1515/znc-2005-3-414.
Das, N. and Chandran, P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. Volume 2011: 941810, https://doi.org/10.4061/2011/941810.
Dragovic, R., Zlatkovic, B., Dragovic, S., et al., 2014. Accumulation of heavy metals in different parts of Russian thistle (Salsola tragus, Chenopodiaceae), a potential hyperaccumulator plant species. Biol. Nyssana. 5: 83-90.
Dresler, S., Wójciak-Kosior, M., Sowa, I., et al., 2018. Effect of long-term strontium exposure on the content of phytoestrogens and allantoin in soybean. Int. J. Mol. Sci. 19 (12): 3864, https://doi.org/10.3390/ijms19123864.
Epstein, E., Norlyn, J. D., Rush, D. W., et al., 1980. Saline culture of crops: a genetic approach. Science 210: 399-404.
Esmaeili, N., Shen, G. and Zhang, H. 2022. Genetic manipulation for abiotic stress resistance traits in crops. Front. Plant. Sci. 13: 1011985, https://doi.org/10.3389/fpls.2022.1011985.
Finley, B. K., Mau, R. L., Hayer, M., et al., 2022. Soil minerals affect taxon-specific bacterial growth. ISME. J. 16: 1318–1326, https://doi.org/10.1038/s41396-021-01162-y.
Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55: 307-319, https://doi.org/10.1093/jxb/erh003.
Galfati, I., Bilal, E., Sassi A. B., et al., 2011. Accumulation of heavy metals in native plants growing near the phosphate treatment industry, Tunisia. Carpathian J. Earth Environ. Sci. 6: 85–100.
Gartley, K. L. 2011. Recommended methods for measuring soluble salts in soils, Chapter 10. In: Recommended Soil Testing Procedures for the Northeastern United States Last Revised Cooperative Bulletin No 493: 87-94, http://s3.amazonaws.com/udextension/lawngarden/files/2012/10/CHAP10.pdf.
Gaudino, S., Galas, C., Belli, M., et al., (2007). The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accred. Qual. Assur. 12: 84–93, https://doi.org/10.1007/s00769-006-0238-1.
Ghazvini, P. T. M., Mashkani, S. G. and Ghafourian, H. 2007. Biosorption of Strontium from Aqueous Solution by New Strain Bacillus sp., GTG-83. WM’07 Conference, February 25-March 1, 2007, Tucson, AZ.
Grieve, C. M., Poss, J. A., Grattan, S. R., et al., (2010). The combined effects of salinity and excess boron on mineral ion relations in broccoli. Scientia Horticulturae 125 (3): 179-187.
Gupta, A., Gupta, R. and Singh, R. L. 2016. Microbes and environment. Principles and Applications of Environmental Biotechnology for a Sustainable Future 15: 43–84, https://doi.org/10.1007/978-981-10-1866-4-3.
Hanin, M., Ebel, C., Ngom, M., et al., 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7: 1787, https://doi.org/10.3389/fpls.2016.01787.
Hasegawa, P. M., Bressan, R. A., Zhu J – K., et al., 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499.
Hasna, V. M., Aboobacker, V. M., Dib, S., et al., (2024). Elemental distributions in the marine sediments off Doha, Qatar: Role of urbanisation and coastal dynamics. Environ. Earth Sci. 83: 434, https://doi.org/10.1007/s12665-024-11738-4.
Hawkesford, M. J. and Buchner, P. 2001. Molecular analysis of plant adaptation to the environment. Kluwer Academic Publishers, Dordrecht, https://doi.org/10.1007/978-94-015-9783-8.
Huck, T. A., Porter, N. and Bushell, M. E. 1991. Positive selection of antibiotic-producing soil isolates. J. Gen. Microb. 137: 2321-2329.
Ibrahim, M. M., Alsahli, A. A. and El-Gaaly, G. 2013. Evaluation of phytoremediation potential of six wild plants for metal in a site polluted by industrial wastes: a field study in Riyadh, Saudi Arabia. Pak. J. Bot. 42: 571–576.
Isaaks, E. H. and Srivastava, R. M. 1989. An Introduction to applied geo-statistics. Oxford University Press, New York.
Jeong, S. W. and Choi, Y. J. 2020. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment. Molecules 25(21):4916, https://doi.org/10.3390/molecules25214916.
Karakas, S., Dikilitas, M. and T?p?rdamaz, R. 2020. Phytoremediation of salt-affected Soils using halophytes. In: Grigore, MN (Ed.) Handbook of halophytes. Springer, Cham, https://doi.org/10.1007/978-3-030-17854-3_93-1.
Kislioglu, M. S. and Sasmaz, A. 2017. The accumulation of strontium by the native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration 181, https://doi.org/10.1016/j.gexplo.2017.08.001.
Kremer, R. J. 2013. Interactions between plants and microorganisms. Allelopathy J. 31: 51-70.
Laçin, B., Ta?tan, B. E. and Dönmez, G. 2015. Detection of boron removal capacities of different microorganisms in wastewater and effective removal process. Water Sci. Technol. 72 (10): 1832–1839, https://doi.org/10.2166/wst.2015.409.
Landi, M., Margaritopoulou, T., Papadakis, I. E., et al., 2019. Boron toxicity in higher plants: an update. Planta 250: 1011–1032, https://doi.org/10.1007/s00425-019-03220-4.
Li, F., Zhang, X., Gong, J., et al., 2018. Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS One 13(3): e0194080, https://doi.org/10.1371/journal.pone.0194080.
Liu, Q., Tang, J., Bai, Z., et al., 2015. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield. Sci. Rep. 5(1): 11068, https://doi.org/10.1038/srep11068.
Liu, R., Huang, S., Zhang, X., et al., 2021. Bio-mineralization, characterization, and stability of calcium carbonate containing organic matter. RSC Adv. 11(24): 14415-14425, https://doi.org/10.1039/d1ra00615k.
Manawi, Y., Subeh, M., Al-Marri, J., et al., 2024. Spatial variations and health risk assessment of heavy metal levels in groundwater of Qatar. Sci. Rep. 14: 15904, https://doi.org/10.1038/s41598-024-64201-6
McGee, C. J., Fernandez, I. J., Norton, S. A., et al., 2006. TB195: Element concentrations in Maine forest vegetation and soils element concentrations in marine forest vegetation and soils. Technical Bulletin 195, Maine Agricultural and Forest Experiment Station. Orono, Maine, The University of Maine.
Mengel, K., Kirkby, E. A., Kosegarten, H., et al., 2001. Principles of plant nutrition, 5th Edn. Kluwer Academic Publishers, Dordrecht. The Netherlands, ISBN 1-4020-0008-1.
Milner, M. J. and Kochian, L. 2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany 102 (1): 3-13.
Mishra, J., Singh, R. and Arora, N. K. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 8: 1706, https://doi.org/10.3389/fmicb.2017.01706.
Munns, R., James, R. A. and Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57 (5): 1025-1043.
National Research Council (NRC). 2000. Genetically modified pest-protected plants: Science and Regulation and Regulation Committee on Genetically Modified Pest-Protected Plants, National Research Council. The National Academies Press, Washington, DC, https://doi.org/10.17226/9795.
Oja, J., Adenan, S., Abdel-Fattah, T., et al., 2020. Novel approach to study the diversity of soil microbial communities in Qatar. Qatar University, Faculty and Post Doc, Science and Engineering Doha, Qatar, https://doi.org/10.29117/quarfe.2020.0025.
Pandey, A., Khan, M. K., Hakki, E. E., et al., 2019. Combined boron toxicity and salinity stress-an insight into its interaction in plants. PLANTS (Basel) 8 (10): 364, https://doi.org/10.3390/plants8100364.
Perri, E., Tucker, M. E., S?owakiewicz, M., et al., 2017. Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed Sabkha, Qatar): Roles of bacteria, extracellular polymeric substances, and viruses. Sedimentology 65 (4): 1213-1245, https://doi.org/10.1111/sed.12419.
Qurashi, A. W. and Sabri, A. N. 2011. Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr. J. Microbiol. Res. 5: 3546–3554.
Rath, K. M., Maheshwari, A., Bengtson, P., et al., 2016. Comparative toxicities of salts on microbial processes in soil. Appl. Environ. Microbiol. 82(7): 2012–2020, https://doi.org/10.1128/AEM.04052-15.
Redillas, M. C. F. R., Park, S. H., Lee, J. W., et al., 2012. Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnology Reports 6: 89-96.
Saleh, A. E. 2021. Hydrocarbon degrading candidate bacteria isolated from Qatar polluted soil and molecular identification of key enzymes coding genes, MSc thesis. Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
Sari, M. A. and Chellam, S. 2015. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation. Journal of Colloid and Interface Science 458: 103-111, https://doi.org/10.1016/j.jcis.2015.07.035.
Sarojam, P. 2010-2012. Trace metal characterization of soils using the optima 7300 DVICP(OES), https://resources.perkinelmer.com/corporate/cmsresources/images/44-74170appicpoestracemetals.pdf.
Sasmaz, A. 2017. The accumulation of strontium by native plants grown on mining soil. Journal of Geochemical Exploration 181, https://doi.org/10.1016/j.gexplo.2017.08.003. (Accessed 9th June 2024).
Saxena, A. K., Kumar, M., Chakdar, H., et al., 2020. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology 128 (6): 1583-1594, https://doi.org/10.1111/jam.14506.
Skariah, S., Abdul-Majid, S., Hay, A. G., et al., 2023. Soil properties correlate with microbial community structure in Qatari arid soils. ASM Journals: Microbiology Spectrum 11 (2), https://doi.org/10.1128/spectrum.03462-22.
Small, T. D., Warren, L. A., Roden, E. E., et al., 1999. Sorption of strontium by bacteria Fe (III) oxide, and bacteria -Fe (III) oxide composites. Environ. Sci. Technol. 33: 4465-4470.
Srividya, A. R., Saitha, G. S. and Suresh, B. 2008. Study of the soil isolates for antimicrobial activity. Indian J. Pharm. Sci. 70 (6): 812–815.
Svoboda, K. K. H. and Reenstra, W. R. 2002. Approaches to studying cellular signaling: a primer for morphologists. Anat. Rec. 269 (2): 123–139, https://doi.org/10.1002/ar.10074.
Ulrich, N., Nagler, K., Laue, M., et al., 2018. Experimental studies addressing the longevity of Bacillus subtilis spores - The first data from a 500-year experiment. PLoS One13(12): e0208425, https://doi.org/10.1371/journal.pone.0208425.
Usman, K., Al-Ghouti, M. A. and Abu-Dieyeh, M. H. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qatarensis. Scientific Reports 4(9): 5658, https://doi.org/10.1038/s41598-019-42029-9.
Xiong, L. and Zhu, J-K. 2001. Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol. Plant. 112: 152-166.
Wang, D., Lin, J., Lin, J., et al., 2019. Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity. Molecules 24 (17): 3021, https://doi.org/10.3390/molecules 24173021.
Wuana, R. A. and Okieimen, F. E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks, and best available strategies for remediation. International Scholarly Research Notices Volume 2011/ Article: ID 402647, https://doi.org/10.5402/2011/402647.
Yan, A., Wang, Y., Tan, S. N., et al., 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted Land. Front. Plant Sci. 11: 359, https://doi.org/10.3389/fpls.2020. 00359.
Yasseen, B. T. 2014. Phytoremediation of industrial wastewater from oil and gas fields using native plants: The research perspectives in the State of Qatar. Scholars Research Library, Central European Journal of Experimental Biology 3 (4): 6-23.
Yasseen, B. T. and Abu-Al-Basal, M. A. 2008. Ecophysiology of Limonium axillare and Avicennia marina from the Coastline of Arabian Gulf-Qatar. Journal of Coastal Conservation: Planning and Management12(1):35-42, https://doi.org/10.1007/s11852-008-0021-z.
Yasseen, B. T. and Abu-Al-Basal, M. A. 2010. Ecophysiology of Chenopodiaceae at the coastline of Arabian Gulf-Qatar: Possible destruction and prespective conservation. European Journal of Scientific Research 39 (1): 90-104.
Yasseen, B. T. and Al-Thani, R. F. 2007. Halophytes and associated properties of natural soils in the Doha area, Qatar. AEHMS 10 (3): 320-326, https://doi.org/10.1080/14634980701519462.
Yasseen, B. T. and Al-Thani, R. F. 2013. Ecophysiology of wild plants and conservation perspectives in the State of Qatar, Chapter 3. In: Stoytcheva M, Zlatev R (Eds.). Agricultural Chemistry. ISBN: 978 953-51-1026-2, Rijeka (Croatia): InTech. 2013. pp. 37–70.
Yasseen, B. T. and Al-Thani, R. F. 2022. Endophytes and halophytes to remediate Industrial wastewater and saline soils: Perspectives from Qatar. PLANTS 11(11): 1497, https://doi.org/10.3390/plants1111149.
Yasseen, B. T. and Al-Thani, R. F. 2023. Wild plants in the Qatari peninsula are hidden gene bank for future research: Perspectives of desirable traits, Chapter 6. India, UK. B P International: 207-252, https://doi.org/10.9734/bpi/cerb/v8/6473A.
Yousuf, J., Thajudeen, J., Rahiman, M., et al., 2022. Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J. Basic Microbiol. 57(11): 922-932, https://doi.org/10.1002/jobm.
Zhu, J-K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941- 948, https://doi.org/10.1104/pp.124.3.941.
Websites
https://en.wikipedia.org/wiki/Al_Ghariya.
https://water.fanack.com/qatar/water-resources-in-qatar/.
https://northsearegion.eu/media/19831/water-and-soil-salinity.pdf.
![]() |
![]() |
![]() |
![]() |
![]() |