Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:2, February, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(2): 35-47
DOI: https://doi.org/10.20546/ijcmas.2025.1402.004


Analyzing the Efficiency of Foam as an Immobilization Matrix for the Storage of Cyanobacterial Cells
Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, India
*Corresponding author
Abstract:

The present study aimed to analyze the efficiency of preserving cyanobacterial cultures by immobilizing them in foam. Preserving these photosynthetic organisms is advantageous as it reduces the researchers’ load of repeated isolation, purification, and maintenance of batch cultures. Cyanobacterial cells were immobilized for a period of one, two, and three years and various biochemical aspects such as energy production, carbohydrate, and protein synthesis were evaluated. Activities of different enzymes like nitrogenase, glutamine synthetase, nitrate reductase, and nitrite reductase were also checked. The morphological studies carried out using scanning electron microscopy (SEM) revealed that cyanobacterial filaments adhered well to the foam matrix and regenerated into healthy filaments when conditions became favorable. The results obtained after the investigation suggested that cyanobacterial cells retained all of the characteristics analyzed for a maximum period of twenty-four months. Thus, foam serves as a good immobilization matrix for the preservation of cyanobacteria for at least two years.


Keywords: Biomass production, Foam, Immobilization, Nostoc muscorum, Scanning Electron Microscopy


References:

Abed, R.M., Dobretsov, S., Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology 106(1): 1-12. https://doi.org/10.1111/j.1365-2672.2008.03918.x

Arizmendi, J. M., Serra, J. L. (1990). Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1040(2): 237-244. https://doi.org/10.1016/0167-4838(90)90082-Q

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Brouers, M. and Hall, D. O. (1986). Ammonia and hydrogen production by immobilized cyanobacteria. Journal of Biotechnology 3(5-6): 307-321. https://doi.org/10.1016/0168-1656(86)90012-X

Flores, E., Frías, J. E., Rubio, L. M., Herrero, A. (2005). Photosynthetic nitrate assimilation in cyanobacteria. Photosynthesis Research 83: 117-133. https://doi.org/10.1007/s11120-004-5830-9

Gerwick, W. H., Roberts, M. A., Proteau, P. J., Chen, J. L. (1994). Screening cultured marine microalgae for anticancer-type activity. Journal of Applied Phycology 6: 143-149. https://doi.org/10.1007/BF02186068

Gisby, P. E., Rao, K. K., Hall, D. O. (1987). Entrapment techniques for chloroplasts, cyanobacteria, and hydrogenases. Methods in Enzymology 135: 440-454. https://doi.org/10.1016/0076-6879(87)35100-6

Golden, J. W., Yoon, H. S. (1998). Heterocyst formation in Anabaena. Current Opinion in Microbiology 1(6): 623-629. https://doi.org/10.1016/S1369-5274(98)80106-9

Hall, D. O., Rao, K. K., Park, I. H. (1991). Immobilized photosynthetic systems for the production of fuels and chemicals. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-011-3396-8_11

Jaki, B., Heilmann, J., Sticher, O. (2000). New Antibacterial Metabolites from the Cyanobacterium Nostoc commune (EAWAG 122b). Journal of natural products 63(9): 1283-1285. https://doi.org/10.1021/np000033s

Kajiyama, S. I., Kanzaki, H., Kawazu, K., Kobayashi, A. (1998). Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron letters 39(22): 3737-3740. https://doi.org/10.1016/S0040-4039(98)00573-5

Koehn, F. E., Longley, R. E., Reed, J. K. (1992). Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscula. Journal of Natural Products 55(5): 613-619. https://doi.org/10.1021/np50083a009

Lau, N. S., Matsui, M., Abdullah, A. A. A. (2015). Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Research International 2015: 1-9. https://doi.org/10.1155/2015/754934

Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140(2): 315-322. https://doi.org/10.1016/S0021-9258(18)51320-X

Manzano, C., Candau, P., Gomez-Moreno, C., Relimpio, A. M., Losada, M. (1976). Ferredoxin- dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Molecular and Cellular Biochemistry 10: 161- 169. https://doi.org/10.1007/BF01731687

Meeks, J. C., Elhai, J. (2002). Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiology and molecular biology reviews 66(1): 94-121. https://doi.org/10.1128/MMBR.66.1.94-121.2002

Musgrave, S. C., Kerby, N. W., Codd, G. A., Stewart, W. D. (1982). Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893. Biotechnology Letters 4: 647-652. https://doi.org/10.1007/BF00141979

Nayak, S., Prasanna, R. (2007). Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Applied Ecology and Environmental Research 5(2): 103-113.

http://dx.doi.org/10.15666/aeer/0502_103113

Papendorf, O., König, G. M., Wright, A. D. (1998). Hierridin B and 2, 4-dimethoxy-6- heptadecyl-phenol, secondary metabolites from the cyanobacterium Phormidium ectocarpi with antiplasmodial activity. Phytochemistry 49(8): 2383-2386. https://doi.org/10.1016/S0031-9422(98)00440-3

Papke, U., Gross, E. M., Francke, W. (1997). Isolation, identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret). Tetrahedron Letters 38(3): 379-382. https://doi.org/10.1016/S0040-4039(96)02284-8

Patterson, G. M., Larsen, L. K., Moore, R. E. (1994). Bioactive natural products from blue-green algae. Journal of Applied Phycology 6: 151-157. https://doi.org/10.1007/BF02186069

Raghukumar, C., Vipparty, V., David, J., Chandramohan, D. (2001). Degradation of crude oil by marine cyanobacteria. Applied Microbiology and Biotechnology 57: 433-436. https://doi.org/10.1007/s002530100784

Rao, K. K. and Hall, D. O. (1984). Photosynthetic production of fuels and chemicals in immobilized systems. Trends in Biotechnology 2(5): 124-129. https://doi.org/10.1016/0167-7799(84)90021-0

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1): 1-61. https://doi.org/10.1099/00221287-111-1-1

Robinson, S. J., Deroo, C. S., Yocum, C. F. (1982). Photosynthetic electron transfer in preparations of the cyanobacterium Spirulina platensis. Plant Physiology 70(1): 154 - 161. https://doi.org/10.1104/pp.70.1.154

Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry 212: 335-343. https://doi.org/10.1016/S0021-9258(18)71120-4

Sampaio, M. J. A., Rowell, P., Stewart, W. D. (1979). Purification and some properties of glutamine synthetase from the nitrogen-fixing cyanobacteria Anabaena cylindrica and a Nostoc sp. Microbiology 111(1): 181-191. https://doi.org/10.1099/00221287-111-1-181

Shah, V., Garg, N., Madamwar, D. (2001). An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World Journal of Microbiology and Biotechnology 17: 499–504. https://doi.org/10.1023/A:1011994215307

Snell, F. D., Snell, C. T. (1959). Colorimetric methods of analysis. D. Van Nostrand, New Jersey, USA

Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131(1): 1-32. https://doi.org/10.1111/j.1469-8137.1995.tb03051.x 

Stewart, W. D., Fitzgerald, G. P., Burris, R. (1967). In situ studies on N2 fixation using the acetylene reduction technique. Proceedings of the National Academy of Sciences 58(5): 2071-2078. https://doi.org/10.1073/pnas.58.5.2071

Sudesh, K., Taguchi, K., Doi, Y. (2001). Can cyanobacteria be a potential PHA producer? Riken Review 75-76.

Syiem, M. B., Bhattacharjee, A. (2015). Structural and functional stability of regenerated cyanobacteria following immobilization. Journal of Applied Phycology 27: 743 -753. https://doi.org/10.1007/s10811-014-0382-7

Vermaas, W. F. (2001). Photosynthesis and respiration in cyanobacteria. Encyclopedia of Life Sciences 1-7. https://doi.org/10.1038/npg.els.0001670

Watanabe, A., Nishigaki, S., Konishi, C. (1951). Effect of nitrogen-fixing blue-green algae on the growth of rice plants. Nature 168(4278): 748-749. https://doi.org/10.1038/168748b0

Wolk, C. P. (1973). Physiology and cytological chemistry blue-green algae. Bacteriological Reviews 37(1): 32-101. https://doi.org/10.1128/br.37.1.32-101.1973


Download this article as Download

How to cite this article:

Amrita Bhattacharjee, Lanakadaphi R. Chullai and Mayashree B. Syiem. 2025. Analyzing the Efficiency of Foam as an Immobilization Matrix for the Storage of Cyanobacterial Cells.Int.J.Curr.Microbiol.App.Sci. 14(2): 35-47. doi: https://doi.org/10.20546/ijcmas.2025.1402.004
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations