![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Lactic acid bacteria have a long history of application in fermented foods because of their beneficial influence on nutritional, organoleptic and shelf-life enhancements. Lactic acid bacteria mainly from Lactobacillus and Bifidobacterium genera and their bacteriocin are industrially used in food preservation. They are known to prevent growth of pathogens, degrade mycotoxins and have probiotic capabilities. Their common occurrence in foods along with long-lived uses contributes to their natural acceptance as GRAS (Generally Recognized as Safe). This paper provides a review on the role of lactic acid bacteria in food, agricultural and clinical applications and numerous benefits of lactic acid bacteria in food industry and its key uses for fermentation and preservation.
Al-Kassaa, I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014) Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics and Antimicrobial Proteins 6: 177-185. https://doi.org/10.1007/s12602-014-9162-6.
Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Naes, T., & Varela, P. (2017) Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International 99: 58-71. https://doi.org/10.1016/j.foodres.2017.07.022
Axelsson, L. (2004) Lactic Acid Bacteria: Classification and Physiology. In: Salminen, S., Wright, A.V. and Ouwehand, A., Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd Edition, Marcel Dekker, New York, 1-67. https://doi.org/10.1201/9780824752033.ch1
Bernbom, N., Licht, T. R., Brogren, C. H., Jelle, B., Johanson, A. H., Badiola, I., Vogensen, F. K., & Norrung, B. (2006) Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin. Applied and Environmental Microbiology 72: 239-244. https://doi.org/10.1128/AEM.72.1.239-244.2006
Bintsis, T., & Attanasoulas, A. (2015) Dairy starter cultures. In Dairy microbiology: A practical approach. Taylor and Francis 2015: 114-154.ISBN9780429089381
Bintsis, T., Vafopoulou-Mastrojiannaki, A., & Litopoulou-Tzanetaki, E. (2003) Protease, Peptidase and Esterase activities by Lactiobacilli and yeast isolates from Feta cheese Brine. Journal of Applied Microbiology 95(1): 68-77. https://doi.org/10.1046/j.1365-2672.2003.01980.x
Bourdichon, F., Berger, B., & Casaregola, S. (2012) A safety assessment of microbial food cultures with history of use in fermented dairy products. International Journal of Food Microbiology 455: 2-12.
Bringel, F. (1998) Carbamoylphosphate and natural autotrophies in lactic acid bacteria.Antonie van Leeuwenhoek78(1): 31-37.
Caplice, E. & Fitzgerald, G. F. (1999) Food fermentation: Role of microorganisms in food production and preservation. International Journal of Food Microbiology 50: 131-149. https://doi.org/10.1016/S0168-1605(99)00082-3
Champagne, C., Gardner, N., & Roy, D. (2005). Challenges in the addition of probiotic cultures to foods. Critical Reviews in Food Science and Nutrition45(1), 61-84. https://doi.org/10.1080/10408690590900144.
Chen, H., Hayek, S., & Guzman, J. R. (2012). The microbiota is essential for the generation of black tea Theaflatoxins - derived metabolites. 7(12), 7-12.
Cogan, T. M., Beresford, T. P., & Steele, J. (2007). Invited review: advances in starter cultures and cultured foods. Food Research International 90(9), 4005-4021. https://doi.org/10.3168/jds.2006-765
Collins, J. K., Thornton, G., & Sullivan, G. O. (1998) Selection of probiotic strains for human applications. International Dairy Journal 8(5-6), 487-490. https://doi.org/10.1016/S0958-6946(98)00073-9
Dalie, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010). Lactic acid bacteria-potential for control of mould growth and mycotoxins: A review. Food Control. 21(4), 370-380. https://doi.org/10.1016/j.foodcont.2009.07.011
De Vuyst, L. (2000). Technology aspects related to the application of functional starter culture. Food Technology and Bacteriology 38(2): 105-112.
Delavenne, E., Mounier, J., & Deniel, F. (2012). Biodiversity of Antifungal Lactic Acid Bacteria Isolated from Raw Milk Samples from Cow, Ewe and Goat over one year period. International Journal Food Microbiology. 155(3), 185-190. https://doi.org/10.1016/j.ijfoodmicro.2012.02.003.
Delves-Broughton, J., Blackburn, P., & Evans, R. J. (1996). Applications of the bacteriocin, nisin. International Journal of Dairy Technology 69(2): 193-202. https://doi.org/10.1007/BF00399424.
Ganzle, M. G., Holtzel, A., & Walter, J. (2000). Characterization of Reutericyclin Produced by Lactobacillus reuteri. Applied Environmental Microbiology 66(10): 4325-4333. https://doi.org/10.1128/aem.66.10.4325-4333.2000
Gorner, F and Valik, L. (2004). Microbiological quality of egg liquid products. Journal of Food Protection 8(1): 80-96.
Gupta, R. & Jeevaratnam, K. (2018). Lactic acid bacteria: Probiotic characteristic, selection criteria and its role in human health (A Review). Biomedicine and Pharmacotherapy 5, 411-424.
Harata, G., He, F., Hiruta, N., Kawase, M., Kubota, A., Hiramatsu, M., & Yausi, H. (2010) Intranasal administration of Lactobacillus rhamnosus GG protects mice from HINI influenza virus infection by regulating respiratory immune responses. Journal of Microbiology and Biotechnology50, 597-602. https://doi.org/10.1111/j.1472-765X.2010.02844.x.
Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria.A review. Food and nutrition sciences 4(11):73-87. http://dx.doi.org/10.4236/fns.2013.411A010
Hoefnagel, M. H. C., Starrenburg, M. J. C., & Martens, D. E. (2002). Metabolic Engineering of Lactic Acid Bacteria, the combined approach. Applied and Environmental Microbiology 148(4): 1003-1013. https://doi.org/10.1099/00221287-148-4-1003
Hooper, L. V & Macpherson, A. J. (2010). Immune adaptation that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology 10, 159-169. https://doi.org/10.1038/nri2710
Hutkins, R. W. (2006). Importance of Lactobacilli for bread making industry. In Microbiology and Technology of Fermented Foods, 475. ISBN: 978-0-8138-0018-9
John, R. P., Nampoothiri, K. M. & Pandey, A. (2007). Fermentative Production of Lactic Acid from Biomass. An overview on process development and future perspectives. Applied Microbiology and Biotechnology 74(3):524-534. https://doi.org/10.1007/s00253-006-0779-6.
Lebeer, S., Vanderleyden, J., & De Keersmaecker S. C. (2008). Genes and molecules of Lactobacilli supporting probiotics action. Microbiology and Molecular Biology Reviews72, 728-764. https://doi.org/10.1128/MMBR.00017-08.
Leroy, F. & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Science Technology 15(2): 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
Liu, M., Bayjavou, J. R., & Renckens, B. (2010). The proteolytic systems of lactic acid bacteria revisited: A genomics comparison. BMC Genomics 11(36): 1-15. https://doi.org/10.1186/1471-2164-11-36
Liu, M., Nauta, A., & Francke, C. (2008). Comparative Genomics of Enzymes in Flavor Forming Pathways From Amino Acids in Lactic Acid Bacteria. Applied and Environmental Microbiology 74(15): 4590-4600. https://doi.org/10.1128/AEM.00150-08.
Liu, W., Pang, H., Zhang, H., & Cai, Y. (2014). Biodiversity of lactic acid bacteria. Annals of Microbiology 64(1): 103-203. https://doi.org/10.1007/978-94-017-8841-0_2
McAuliffe, O., Ross, R. P., & Hill, C. (2001). Antibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Review 25(3): 285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
Meyers, S. A., Cuppett, S. L. & Hutkins, R. W. (1996). Lipase production by lactic acid bacteria and activity on butter oil. Food Microbiology 13(5): 383-389. https://doi.org/10.1006/fmic.1996.0044
Moal, V. L. & Servin, A. L. (2006). The front line on enteric host defence against unwelcome infusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clinical Microbiology Reviews 19, 315-337. https://doi.org/10.1128/CMR.19.2.315-337.2006.
Morelli, L., Calleagri, M. L., & Vogensen, F. K. (2011). Genetics of lactic acid bacteria. Microbiological and functional aspects: In Lactic Acid Bacteria: Microbiological and Functional Aspects 1-17. https://doi.org/10.1201/b11503-3
Nagai T, Makino S, Ikegami S, Itoh H, Yamada H. 2011. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int Immunopharmacol. 11(12):2246–50.
Ogawa, J., Kishino, S., & Ando, A. (2005). Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering. 100(4): 355-364. https://doi.org/10.1263/jbb.100.355.
Panesar, P. S. (2011). Fermented Dairy Products: Starter cultures and potential nutritional benefits. Food Nutritional Science 2(1): 47-51. https://doi.org/10.4236/fns.2011.21006
Quinto, E. J, Caro, I., Villalobos-Delgado, L. H., Mateo, J., De-Mateo-Silleras, B., & Redondo-Del-Rio, M. P. (2019). Food safety through natural antimicrobials. Frontiers in Microbiology 8: 208. https://doi.org/10.3390/antibiotics8040208.
Rattanachaikunsopon, P., & Phumkhachorn, P., (2010). Lactic acid bacteria: their antimicrobial compound and their uses in food production. Pakistan Journal of Biological Sciences 13(4): 218-228.
Rodriguez, D., Rocha-Santos, T. A. P., & Pereira, C. I., (2011). The potential effect of FOS and Insulin upon probiotic bacterium performance in curdled milk matrices. Food Research International 44(1): 100-108. https://doi.org/10.1016/j.lwt.2010.05.021
Saliminen, S., Ouwehand, A & Benno, Y., (1999). Probiotic: how should they be defined? Trends food Science Technology 10(3): 107-110. https://doi.org/10.1016/S0924-2244(99)00027-8
Servin, A.L. (2004) Antagonistic Activities of Lactobacilli and Bifidobacteria against Microbial Pathogens. FEMS Microbiology Review, 28, 405-440. http://dx.doi.org/10.1016/j.femsre.2004.01.003
Sharma, R., Sanodiya, B. S., & Bagrodia, D., (2012). Efficacy and Potential of Lactic Acid Bacteria Modulating Human Health. International Journal Pharma Bio Sci. 3(4): 935-948.
Song, D., Ibrahim, S., & Hayek, S. (2012). Recent Application of Probiotic in Food and Agricultural Science: In Probiotic, InTech, Manhattan: 1-34 https://doi.org/10.5772/50121
Taranto, M. P., Medici, M., & Perdigon, G., A. P. Ruiz Holgado and G. F. Valdez, (1998). “Evidence for Hypocholesterolemic Effect of Lactobacillus reuteri in Hypercholesterolemic Mice,” Journal of Dairy Science, Vol. 81, No. 9, 1998, pp. 2336-2340. http://dx.doi.org/10.3168/jds.S0022-0302(98)70123-7
Twomey, D., Ross, R. P., & Ryan, M. (2002). Antibiotics produced by lactic acid bacteria: structure, function and applications. Antonie van Leeuwenhoek 82(1-4): 165-185. https://doi.org/10.1023/A:1020660321724
Wedajo, B., (2015). Lactic acid bacteria: Benefits, selection criteria and probiotic potential in fermented food. African Journal of Microbiology Research3: 129. https://doi.org/10.4172/2329-8901.1000129
Yuan, Q. & Furuta, G. T. (2003). Insights into milk protein allergy: Microenvironment matters. The American Journal of Gastroenterology 124(1) 259-261. https://doi.org/10.1053/gast.2003.1240259.
![]() |
![]() |
![]() |
![]() |
![]() |