National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This research highlights the untapped potential of marine sediment-derived Streptomyces sp. as a prolific source of novel secondary metabolites exhibiting remarkable antibacterial and biofilm-inhibiting activities. Recognizing the rich biodiversity of marine sediments, samples were serially diluted and cultured using SCA media. After 14 days of incubation at 28ºC, distinct colonies characteristic of Streptomyces sp. was isolated for further study. Secondary metabolites were extracted using methanol and subsequently analyzed through 16S rDNA sequencing, FTIR, and GC-MS techniques. The sequencing provided insights into phylogenetic relationships, while FTIR identified key chemical bonding structures in the extracts. GC-MS analysis unveiled various volatile compounds, corroborating the bioactive potential. Antibacterial assays revealed significant zones of inhibition, confirming the efficacy of the extracts, and antibiofilm assays demonstrated notable inhibition percentages. These findings underscore the promising industrial applications of Streptomyces sp. from marine sediments, paving the way for future exploration and development of these novel secondary metabolites.
Avilala Janardhan, Arthala Praveen Kumar, Buddolla Viswanath, D. V. R. Saigopal, and Golla Narasimha. 2014. Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties. 2014:2014:217030. https://doi.org/10.1155/2014/217030.
Bagge, N Schuster, M hentzer, MCiofu, OGivskov, Mgreenberg, 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. 1175-87. https://doi.org/10.1128/AAC.48.4.1175-1187.2004.
Bajpai T, Pandey M, Varma M, Bhatambare G S, (2017) Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. 12–16. https://doi.org/10.4103/2231-0770.197508
Bérdy J. 2005. Bioactive microbial metabolites. J Antibiot (Tokyo) 58, 1–26 (2005). https://doi.org/10.1038/ja.2005.1
Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. and Prinsep, M. R. Marine natural products. 2014. https://doi.org/10.1039/C3NP70117D
Bradford P A (2001) Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. 933-51 https://doi.org/10.1128/CMR.14.4.933-951.2001.
Branda, S S, Frances Chu, Daniel B Kearns, Robert Losick and Robert Kolter. 2005. A major protein component of the Bacillus subtilis biofilm matrix. https://doi.org/10.1111/j.1365-2958.2005.05020.x
Castillo, U. F., G. A. Strobel, E. J. Ford et al., 2002 “Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. 2675-2685. https://doi.org/10.1099/00221287-148-9-2675
Charlop-Powers Z, Owen J G, Reddy B V, et al., (2014). Chemical-biogeographic survey of secondary metabolism in soil. 3757-62. https://doi.org/10.1073/pnas.1318021111.
Costello, M. J. and Chaudhary, C. 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation. R511-R527 https://doi.org/10.1016/j.cub.2017.04.060
Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: a common cause of persistent infections. 1999. 1318-22. https://doi.org/10.1126/science.284.5418.1318
David L and Paterson M D Phd. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. S62-70. https://doi.org/10.1016/j.amjmed.2006.03.013.
Flemming, H., Wingender, J., Szewzyk, U. et al., 2016. Biofilms: an emergent form of bacterial life. 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94
Goodfellow M and O'Donnell A G. Search and discovery of industrially significant. Baumberg S, Hunter I S, Rhodes P M, 1989
Halan, B., Bühler, K. & Schmid, A. (2012). Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnology. 453-65. https://doi.org/10.1016/j.tibtech.2012.05.003
Hong K, Gao A H, Xie QY, Zhuang L, Lin H P, Yu H P, Li J, Yao X S, Goodfellow M, Ruan J S. 2009. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. 24-44.
https://doi.org/10.3390/md7010024.
Hopwood, D. A. 2007. “Therapeutic treasures from the deep,” Nature Chemical Biology. 457–458 (2007). https://doi.org/10.1038/nchembio0807-457
Jaione Valle, Sandra Da Ra, Nelly Henry, Thierry Fontaine, Damien Balestrino, Patricia Latour Lambert, and Jean-Marc Ghigo. 2006. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide 2006 12558-63. https://doi.org/10.1073/pnas.0605399103
James B. Kaper, James P. Nataro, Harry L. T. Mobley. 2004. Pathogenic Escherichia coli Nat Rev Microbiol 2, 123–140 (2004). https://doi.org/10.1038/nrmicro818
James R. Johnson, Abby Gajewski, Alan J. Lesse and Thomas A. Russo 2003. Extraintestinal Pathogenic Escherichia coli as a Cause of Invasive Nonurinary Infections. 5798–5802. https://doi.org/10.1128/JCM.41.12.5798-5802.2003
Katarzyna Jakubiec-Krzesniak, Alexsandra Rajnisz-Mateusiak, Adam Guspiel, Joanna Ziemska and Joltana solecka. 2018. Secondary metabolites of actinomycetes and their antibacterial, antifungal, and antiviral properties. 259–272. https://doi.org/10.21307/pjm-2018-048
Luanne Hall Stoodley & Paul Stoodely. (2009). Evolving Concepts in Biofilm Infection. 1034-43. https://doi.org/10.1111/j.1462-5822.2009.01323.x.
Masayuki takizawa, Rita R. Colwell, Russell T. Hill. 1993. Isolation and Diversity of Actinomycetes in the Chesapeake Bay. 997–1002. https://doi.org/10.1128/aem.59.4.997-1002.1993
Meckenstock, R. et al., (2015). Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. https://doi.org/10.1021/acs.est.5b00715
Micah D. Shepherd, Madan K. Kharel, Mary A. Bosserman, and Jürgen Rohr. (2010). Laboratory Maintenance of Streptomyces species. https://doi.org/10.1002/9780471729259.mc10e01s18
Murugan Rajalaxmi, Rajamohammed Beema Shafreen, Prasanth M. Iyer Raja Sahava Vino, Krishnaswamy Balamurugan & shunmugiah karutha pandian (2016). An in silico, in vitro and in vivo investigation of indole-3-carboxaldehyde identified from the seawater bacterium Marinomonas sp. as an anti-biofilm agent against Vibrio cholerae O1
Paul N. Danese, Leslie A. Pratt, and Roberto Kolter. 2000. Exopolysaccharide Production Is Required for Development of Escherichia coli K-12 Biofilm Architecture. 3593-6. https://doi.org/10.1128/JB.182.12.3593-3596.2000
Periyasamy Sivalingam, Kui Hong, John Pote, and Kandasamy Prabaka. 2019. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads. https://doi.org/10.1155/2019/5283948
Philippon, A., R. Labia and G Jacoby. 1989. Extended-spectrum beta-lactamases. 1131-6. https://doi.org/10.1128/AAC.33.8.1131.
Renu Solanki, Monisha Khanna, Rup Lal (2009). Bioactive compounds from marine actinomycetes. 410–431.
https://doi.org/10.1007/s12088-008-0052-z
Singh V, Haque S, Singh H, Verma J, Vibha K, Singh R, Jawed A, Tripathi C K. 2016. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Frontiers in microbiology. https://doi.org/10.3389/fmicb.2016.01921
Titra kumala Dewi, Dwi agustiani, Sarjiya Antonius. 2017. Secondary Metabolites Production by Actinomycetes and their Antifungal Activity. https://doi.org/10.18502/kls.v3i4.713
Ward A C and Bora N (2006). Diversity and biogeography of marine actinobacteria. 279-86. https://doi.org/10.1016/j.mib.2006.04.004.![]() |
![]() |
![]() |
![]() |
![]() |