Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:10, October, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(10): 256-271
DOI: https://doi.org/10.20546/ijcmas.2024.1310.030


Exploring the Ocean's Treasures: Unveiling Novel Antibacterial Metabolites from Marine-Derived Streptomyces sp.
M.Sangeetha1, S. Seema2*, Manobharathi Vengaimaran4, Roseline Jenifer3, T. Sheela2, Uma Devi Pongiya4, P. Shobana Devi4 and S. Selvapriya2
1Department of Microbiology, Thanjavur Medical College, Thanjavur, India
2Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women(A), Perambalur, India
3Department of Biotechnology, Sathyabama Institute of Science and Technology, India
4Department of Biochemistry, Dhanalakshmi Srinivasan College of Arts and Science for Women(A), Perambalur, India
*Corresponding author
Abstract:

This research highlights the untapped potential of marine sediment-derived Streptomyces sp. as a prolific source of novel secondary metabolites exhibiting remarkable antibacterial and biofilm-inhibiting activities. Recognizing the rich biodiversity of marine sediments, samples were serially diluted and cultured using SCA media. After 14 days of incubation at 28ºC, distinct colonies characteristic of Streptomyces sp. was isolated for further study. Secondary metabolites were extracted using methanol and subsequently analyzed through 16S rDNA sequencing, FTIR, and GC-MS techniques. The sequencing provided insights into phylogenetic relationships, while FTIR identified key chemical bonding structures in the extracts. GC-MS analysis unveiled various volatile compounds, corroborating the bioactive potential. Antibacterial assays revealed significant zones of inhibition, confirming the efficacy of the extracts, and antibiofilm assays demonstrated notable inhibition percentages. These findings underscore the promising industrial applications of Streptomyces sp. from marine sediments, paving the way for future exploration and development of these novel secondary metabolites.


Keywords: Streptomyces sp., Antibacterial Activity, Biofilm Inhibition, 16S rDNA Sequencing


References:

Avilala Janardhan, Arthala Praveen Kumar, Buddolla Viswanath, D. V. R. Saigopal, and Golla Narasimha. 2014. Production of Bioactive Compounds by Actinomycetes and Their Antioxidant Properties. 2014:2014:217030. https://doi.org/10.1155/2014/217030.

Bagge, N Schuster, M hentzer, MCiofu, OGivskov, Mgreenberg, 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. 1175-87. https://doi.org/10.1128/AAC.48.4.1175-1187.2004.

Bajpai T, Pandey M, Varma M, Bhatambare G S, (2017) Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. 12–16. https://doi.org/10.4103/2231-0770.197508

Bérdy J. 2005. Bioactive microbial metabolites. J Antibiot (Tokyo) 58, 1–26 (2005). https://doi.org/10.1038/ja.2005.1

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G. and Prinsep, M. R. Marine natural products. 2014. https://doi.org/10.1039/C3NP70117D

Bradford P A (2001) Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. 933-51 https://doi.org/10.1128/CMR.14.4.933-951.2001.

Branda, S S, Frances Chu, Daniel B Kearns, Robert Losick and Robert Kolter. 2005. A major protein component of the Bacillus subtilis biofilm matrix. https://doi.org/10.1111/j.1365-2958.2005.05020.x

Castillo, U. F., G. A. Strobel, E. J. Ford et al., 2002 “Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. 2675-2685. https://doi.org/10.1099/00221287-148-9-2675

Charlop-Powers Z, Owen J G, Reddy B V, et al., (2014). Chemical-biogeographic survey of secondary metabolism in soil. 3757-62. https://doi.org/10.1073/pnas.1318021111.

Costello, M. J. and Chaudhary, C. 2017. Marine biodiversity, biogeography, deep-sea gradients, and conservation. R511-R527 https://doi.org/10.1016/j.cub.2017.04.060

Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: a common cause of persistent infections. 1999. 1318-22. https://doi.org/10.1126/science.284.5418.1318

David L and Paterson M D Phd. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. S62-70. https://doi.org/10.1016/j.amjmed.2006.03.013.

Flemming, H., Wingender, J., Szewzyk, U. et al., 2016. Biofilms: an emergent form of bacterial life. 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94

Goodfellow M and O'Donnell A G. Search and discovery of industrially significant. Baumberg S, Hunter I S, Rhodes P M, 1989

Halan, B., Bühler, K. & Schmid, A. (2012). Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnology. 453-65. https://doi.org/10.1016/j.tibtech.2012.05.003 

Hong K, Gao A H, Xie QY, Zhuang L, Lin H P, Yu H P, Li J, Yao X S, Goodfellow M, Ruan J S. 2009. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. 24-44.

            https://doi.org/10.3390/md7010024.

Hopwood, D. A. 2007. “Therapeutic treasures from the deep,” Nature Chemical Biology. 457–458 (2007). https://doi.org/10.1038/nchembio0807-457

Jaione Valle, Sandra Da Ra, Nelly Henry, Thierry Fontaine, Damien Balestrino, Patricia Latour Lambert, and Jean-Marc Ghigo. 2006. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide 2006 12558-63. https://doi.org/10.1073/pnas.0605399103

James B. Kaper, James P. Nataro, Harry L. T. Mobley. 2004. Pathogenic Escherichia coli Nat Rev Microbiol 2, 123–140 (2004). https://doi.org/10.1038/nrmicro818

James R. Johnson, Abby Gajewski, Alan J. Lesse and Thomas A. Russo 2003. Extraintestinal Pathogenic Escherichia coli as a Cause of Invasive Nonurinary Infections. 5798–5802. https://doi.org/10.1128/JCM.41.12.5798-5802.2003

Katarzyna Jakubiec-Krzesniak, Alexsandra Rajnisz-Mateusiak, Adam Guspiel, Joanna Ziemska and Joltana solecka. 2018. Secondary metabolites of actinomycetes and their antibacterial, antifungal, and antiviral properties. 259–272. https://doi.org/10.21307/pjm-2018-048

Luanne Hall Stoodley & Paul Stoodely. (2009). Evolving Concepts in Biofilm Infection. 1034-43. https://doi.org/10.1111/j.1462-5822.2009.01323.x

Masayuki takizawa, Rita R. Colwell, Russell T. Hill. 1993. Isolation and Diversity of Actinomycetes in the Chesapeake Bay. 997–1002. https://doi.org/10.1128/aem.59.4.997-1002.1993

Meckenstock, R. et al., (2015). Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. https://doi.org/10.1021/acs.est.5b00715

Micah D. Shepherd, Madan K. Kharel, Mary A. Bosserman, and Jürgen Rohr. (2010). Laboratory Maintenance of Streptomyces species. https://doi.org/10.1002/9780471729259.mc10e01s18

Murugan Rajalaxmi, Rajamohammed Beema Shafreen, Prasanth M. Iyer Raja Sahava Vino, Krishnaswamy Balamurugan & shunmugiah karutha pandian (2016). An in silico, in vitro and in vivo investigation of indole-3-carboxaldehyde identified from the seawater bacterium Marinomonas sp. as an anti-biofilm agent against Vibrio cholerae O1

Paul N. Danese, Leslie A. Pratt, and Roberto Kolter. 2000. Exopolysaccharide Production Is Required for Development of Escherichia coli K-12 Biofilm Architecture. 3593-6. https://doi.org/10.1128/JB.182.12.3593-3596.2000

Periyasamy Sivalingam, Kui Hong, John Pote, and Kandasamy Prabaka. 2019. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads. https://doi.org/10.1155/2019/5283948

Philippon, A., R. Labia and G Jacoby. 1989. Extended-spectrum beta-lactamases. 1131-6. https://doi.org/10.1128/AAC.33.8.1131.  

Renu Solanki, Monisha Khanna, Rup Lal (2009). Bioactive compounds from marine actinomycetes. 410–431.

https://doi.org/10.1007/s12088-008-0052-z

Singh V, Haque S, Singh H, Verma J, Vibha K, Singh R, Jawed A, Tripathi C K. 2016. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Frontiers in microbiology. https://doi.org/10.3389/fmicb.2016.01921

Titra kumala Dewi, Dwi agustiani, Sarjiya Antonius. 2017. Secondary Metabolites Production by Actinomycetes and their Antifungal Activity. https://doi.org/10.18502/kls.v3i4.713

Ward A C and Bora N (2006). Diversity and biogeography of marine actinobacteria. 279-86. https://doi.org/10.1016/j.mib.2006.04.004.

Download this article as Download

How to cite this article:

Sangeetha, M., S. Seema, Manobharathi Vengaimaran, Roseline Jenifer, T. Sheela, Uma Devi Pongiya, P. Shobana Devi and Selvapriya, S. 2024. Exploring the Ocean's Treasures: Unveiling Novel Antibacterial Metabolites from Marine-Derived Streptomyces sp.Int.J.Curr.Microbiol.App.Sci. 13(10): 256-271. doi: https://doi.org/10.20546/ijcmas.2024.1310.030
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations