Index Copernicus
Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:10, October, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(10): 213-222
DOI: https://doi.org/10.20546/ijcmas.2024.1310.026


Prevalence and Pattern of Antibiotic Resistance of Staphylococcus aureus Isolated from Poultry in Khartoum State, Sudan
1Department of Microbiology, Najran University, Saudi Arabia
2Central Laboratory, Ministry of Higher Education and Scientific Research, Sudan
3Faculty of Science and Technology, Omdurman Islamic University, Sudan
*Corresponding author
Abstract:

This study investigates the prevalence of Staphylococcus aureus contamination and assesses antimicrobial resistance patterns in chicken meat, chicken swabs, and farm workers in Khartoum State, Central Sudan. Four hundred samples were collected from the poultry sector. S. aureus was found in 27.8% of the samples, with 18.9% from chicken meat, 34.7% from chicken swabs, and 23.5% from farm workers. The prevalence did not significantly differ between sources (P>0.05). Among the 111 isolates, 102 (91.9%) were mecA gene positive, classified as MRSA, while nine isolates were mecA negative but still methicillin-resistant. Resistance patterns against seven antibiotics were tested. For mecA positive isolates, resistance rates were 15.7% for Penicillin G, 86.3% for Oxacillin, 88.2% for Cefoxitin, 100% for Methicillin, 9.8% for Vancomycin, 100% for Erythromycin, and 97.1% for Tetracyclines. For mecA negative isolates, resistance rates were 11.1% for Penicillin G, 11.1% for Oxacillin, 33.3% for Cefoxitin, 100% for Methicillin, 11.1% for Vancomycin, 100% for Erythromycin, and 88.9% for Tetracyclines. Sensitivity to Penicillin and Vancomycin was observed in 84.3% and 90.1% of mecA positive isolates, and 88.9% of mecA negative isolates. MICs for Penicillin ranged from 45 to 0.005 µg/ml for mecA-positive isolates and from 11.25 to 0.01 µg/ml for mecA-negative isolates. MICs for Vancomycin ranged from 12.5 to 0.17 µg/ml for mecA-positive isolates and from 6.25 to 0.35 µg/ml for mecA-negative isolates. The reference strain ATCC25923 showed MICs of 2.8 µg/ml for Penicillin and 6.25 µg/ml for Vancomycin. The highest isolation rate of S. aureus was from chicken swabs, followed by chicken meat and farm workers. The highest incidence of MRSA was also from chicken swabs, indicating a potential source of antimicrobial-resistant S. aureus infection. Emphasizing food hygiene is essential to sustain public health.


Keywords: Staphylococcus aureus, antibiotic resistance, farm workers


References:

Aarestrup, F. M., Agers, Ahrens, P., Jrgensen, J. Ch. Q., Madsen, M., Jensen, L. B. (2000). Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Veterinary Microbiology 74: 353-364.

https://doi.org/10.1016/s0378-1135(00)00197-8

Abdalrahman, L., S., Stanly, A., wells, h. and Fakhr, M. K. (2015). Isolation, Virulence and antimicrobial resistance of methicillin-resistant S. aureus (MRSA) and methicillin -sensitive S. aureus (MSSA) strains from Oklahoma retail poultry meats. Int. J. Environ. Res. Public Health. vol. (6) 12:6148-6161.

Aestrup, F. M. and Wegener, H. C. (1999). The effects of antibiotics usage in food animals on the development of antimicrobial resistance of importance for human in Campylobacter and Escherichia coli. Microbes and Infection 1:639-644. https://doi.org/10.1016/s1286-4579(99)80064-1

Barber, D. A.; Miller, G. Y. and McNamara, P. E. (2003). Models of antimicrobial resistance and food-borne illness: examining assumptions and practical application. J. Food Protect. 66: 700–709. https://doi.org/10.4315/0362-028x-66.4.700

Barrow, G. I. and Feltham, R. K. (1993). In Cowan and Steel's Manual for Identification of Medical Bacteria. 3rd Ed. Cambridge. https://doi.org/10.1017/CBO9780511527104

Bhargava, K., Wang, X., Donabedian, S., Zervos, M., Rocha, L. and Zhang, Y. (2011). Methicillin-resistant S. aureus in retail meat, Detroit, Michigan, USA. Emerging Infectious Diseases.vol. (17) 6:1135-1137. https://doi.org/10.3201/eid1706.101095

Butter worth, A. (1999). Infectious components of broiler lameness: a review. Worlds Poultry. Sci. J. 55:327-352. https://doi.org/10.1079/WPS19990024

Cheeshrough, M. (2006). District Laboratory Practice in Tropical Countries. 2ndEd. Cambridge University Press. P.132-143.

Clinical and Laboratory Standards Institute (CLSI) (2018). Performance Standards for Antimicrobial Susceptibility Testing. M100, 28th Ed.

Corner, D. E., Davis, M. A. and Zang, L. (2001). Poultry-borne pathogens: plant considerations. In: Poultry meat Processing. Edited by Sams, A. R., Published by CRC Press Taylor & Francis Group LCC. Boca Raton, FL 33487-2742 Chapter 9 –Pages 137-158.

Febler, A. T., Kadlec, K., Hassel, M., Hauschild, T., Eidam, Ch., Ehricht, R., Monecke, S. and Schwarz, S. (2011). Characterization of methicillin-resistant S. aureus isolates from food and food products of poultry origin in Germany. Appl. & environment. Microbiology.vol. (77) 20:7151-7157. https://doi.org/10.1128/AEM.00561-11

Hanson, B. M., Dressler, A. E., Harper, A. L., Scheibel, R. P., Wardyn, S. E., Roberts, L. K., Kroeger, J. S. and Smith, T. C. (2011). Prevalence of S. aureus and methicillin-resistant S. aureus (MRSA) on retail meat in Lowa. Journal of Infection and Public Health4:169-174.

https://doi.org/10.1016/j.jiph.2011.06.001

Hassan, A. H., Hassan, S. A. and Abdul Ahad, E. A. (2012). Pathological and bacteriological study of bumblefoot cases in Sulaimaniyah province. Al-Anbar J. Vet. Sci. vol. (1) 5:195-201.

Hermans, K., Devries, L. A. and Haesebrouck, F. (2004). Staphylococcus. In Gyles, C. L., Prescott, J. F., Songer, J. G. and Thoen, C.O. Pathogenesis of Bacterial Infection in Animal. 4thEd. Blackwell publishing. P. 75-89.

Hu, L., Umeda, A., Kondo, S. and Amako, K. (1995). Typing of S. aureus colonizing human nasal carriers by pulsed-field gel electrophoresis. J. Med. Microbiol. 42:127-132.

         https://doi.org/10.1099/00222615-42-2-127

Instruction Manual for Genomic DNA Extraction (2012). G-spin TM Total DNA Extraction Kit. Protocol (F). 1st Edition, iNtRON, Korea.

Ishak, M., A., Ali, H., M. and Kheder, I., S. (2017). Prevalence and knowledge of antibiotics misuse and resistance in poultry and livestock in Khartoum State, Sudan. Sudan Med. Monit. vol. (12) 2:45-50. https://doi.org/10.4103/summ.summ_43_17

Islam, N. N., Akter, M., Farzana, Z., kader A., Uddin, I., ZonaedSiddiki, A. M. A. M. and Kamaruddin, K. M. (2014). Detection of S. aureus in frozen chicken rinse through bacteriological and Nuc gene-specific PCR method and their drug resistance patterns in southern Chittagong, Bangladesh. Research Journal of Microbiology. 9:251-264.

https://scialert.net/abstract/?doi=jm.2014.251.264

Jackson, R. C., Davis, A. J. and Borratt, B. J. (2013). Prevalence and Characterization of Methicillin-Resistant S. aureus isolates from Retail Meat and Humans in Georgia. J. Clin. Microbiol.vol. (51) 4:1199-1207. https://doi.org/10.1128/JCM.03166-12

Karmi, M. (2013). Prevalence of Methicillin-Resistant S. aureus in poultry meat in Qena, Egypt. Vet. World.vol. (6) 10:711-715.

         https://doi.org/10.14202/vetworld.2013.711-715

Kearney, J. (2010). Food consumption trends and drivers. Philosophical Transactions B. The Royal Society publishing: Biol. Sci.365:2793-2807. https://doi.org/10.1098/rstb.2010.0149

Kitai, S., Shimizu, A., Kawano, J., Sato, E., Nakano, Ch., Uji, and Kitagwa, H. (2005). Characterization of methicillin-resistant S. aureus isolated from retail raw chicken meat in Japan. J. Vet. Med. Sci. 67: 107-110. https://doi.org/10.1292/jvms.67.107

Krupa, P., Bystron, J., Bania, J., Podkowik, M., Ekpel, J. and Mroczkowska, A. (2014). Genotypes and oxacillin resistance of S. aureus from chicken and chicken meat in Poland. Poultry Science. 93:3179-3186. https://doi.org/10.3382/ps.2014-04321

Lathers, C M. (2001). Role of veterinary medicine in public health: Antibiotic use in food animals and humans and the effect on evolution of antibacterial resistance. J. Clin. Pharmacol.41:595-599. https://doi.org/10.1177/00912700122010474

Lee, J. H. (2003). Methicillin (oxacillin)-resistant S. aureus strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol. vol. (69) 11:6489-6494. https://doi.org/10.1128/AEM.69.11.6489-6494.2003

Leonard, F. C., and Markey, B. K. (2008). Methicillin-resistant S. aureus in animals: a review. Vet. J. 175:27–36. https://doi.org/10.1016/j.tvjl.2006.11.008.

Linares, J. A and Wigle, W. I (2001). S. aureus pneumonia in turkey poultry with gross lesions resembling aspergillosis. Avain Dis.45:1068-1072.

Liu, D., Chal, T., Xia, X., Gao, Y., Cai, Y., Li, X., Miao, Z., Sun, L., Hao, H., Roesler, U. and Wang, J. (2012). Formation and transmission of S. aureus (including MRSA) aerosols carrying antibiotic-resistant genes in poultry farming environment. Sci. of Environ.426:139-145.

         https://doi.org/10.1016/j.scitotenv.2012.03.060

Losito, P., Vergara, A., Muscariello, T. and Ianieri, A. (2005). Antimicrobial susceptibility of environmental S. aureus strains isolated from a pigeon slaughterhouse in Italy. Poultry ScienceVol. (11) 84:1802–1807.

https://doi.org/10.1093/ps/84.11.1802

Malheiros, P., S., Passos, C., T., Casarin, L., S., Serraglio, L. and Tondo, E., C. (2010). Evaluation of growth and transfer of S. aureusfrom poultry meat to surfaces of stainless steel and polyethylene and their disinfectant. Food Control 21:298-301. https://doi.org/10.1016/j.foodcont.2009.06.008

McClure, J. A., Conly, J. M. and Zhang, K. (2006). Novel multiplex PCR Assay for detection of the Staphylococcal virulence marker panton-valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from-resistant staphylococci. J. Clin. Microbiol.vol. (3) 44:1141-1144. https://doi.org/10.1128/JCM.44.3.1141-1144.2006.

McNamme, P. T. and Smyth, J. A. (2000). Bacterial chondoronecrosis with osteomyelitis (Femoral head necrosis) of broiler chickens: a review. Avia. Pathol.29:253-270.

Moellering, R. G. J R. (2012). Methicillin-Resistant S. aureus: the first half century. J. Antimicrob. chemother. 67:4-11 Cited by Wendlandt, S. (2014). Comparative molecular analysis of S. aureus from intensive livestock farming emphasises LA-MRSA of poultry origin. ph D. Thesis, University of Veterinary Medicine Hannover, Hannover, Germany

Monecke, S., Gavier-Wid?n, D., Hotzel, H., Peters, M., Guenther, S., µWalter, B., Coleman, D. C. and Ehricht, R. (2016). Diversity of S. aureus isolated in European wildlife. PLOS one /journal. pone. 0168433. https://doi.org/10.1371/journal.pone.0168433

Neetu, T., J., P. and Murugan, s. (2016). Genotyping of MRSA from tertiary care hospital in Coimbatore, South India. J. global Infectious Disease. Vol (2)9: 68-74. https://doi.org/10.4103/0974-777X.182119

Nemeghaire, S., Roeland, S., Argudin, M. A., Haesebrouck, F. and Butaye, P. (2013). Characterization of methicillin- resistant S. aureus from healthy carrier chickens. Avian Pathology42- 4:342-346. https://doi.org/10.1080/03079457.2013.805183

Olutiola, P. O., Famurewa, O. and Sonntag, H. G. (2000). An Introduction to General Microbiology: A Practical Approach. 2nd ed. Bolabay Publications, Ikeja.

Rozgonyni, F., Kocsis, E., Kristof, K. and Nagy, K. (2007). Is MRSA more virulent than MSSA? Clinical Microbiology and Infection vol. (9) 13:843-845. https://doi.org/10.1111/j.1469-0691.2007.01780.x

Shore, A. C., Deasy, E. C., Slickers, P., Brennan, G., O'Connell, B., Monecke, S., Ehricht, R. and Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome mectype XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.55:3765–3773. https://doi.org/10.1128/AAC.00187-11.

Waters, A. E., Cuomo, T. C., Buchhagen, J., Liu, C. M., Watson, L., Pearce, K., Foster, J. T., Bowers, J., Driebe, E. M., Engelthaler, D. M., Keim, P. S. and Price, L. B. (2011). Multidrug-resistant S. aureus in US meat and poultry. Clin. Infect. Disease 10:181-185. https://doi.org/10.1093/cid/cir181

Wegener, H. C. (1999). The medical impact of use of antimicrobial drugs in food animals and potential hazards. Article in Acta Veterinaria Scandinavica – January

White, D. G., Ayers, S., Maurer, J. J., Thayer, S. G., and Hofacre, C. (2003). Antimicrobial susceptibilities of Staphylococcus aureus isolated from commercial broilers in northeastern Georgia. Avian Dis.47:203–210. https://doi.org/10.1637/0005-2086(2003)047[0203:ASOSAI]2.0.CO;2

Wijesekara, P., N., K., Kumbukgolla. W., W., Jayaweera, J., A., A., S. and Rawat, D. (2017). Review on usage of vancomycin in livestock and Humans: maintaining its efficacy, prevention of resistance and alternative therapy. Vet. Sci.vol. (4) 6:2-11 https://doi.org/10.3390/vetsci4010006

Zhong, Z., chai, T., Duan, H., Li, X., Yao, M., Yuan, W. Wang, W., Li, Q., Zucker, B. A. and Schlenker. G. (2009). REP-PCR tracking of the origin and spread of airborne S. aureus in and around chicken house. Intern. J. Indoor Environment and health. vol. (9) 6:511-516. https://doi.org/10.1111/j.1600-0668.2009.00618.x


Download this article as Download

How to cite this article:

Nada Elsir Ahmed Fagir, Hanan Moawia Ibrahim, Hatil Hashim El-kamali and Osama Mohamed. 2024. Prevalence and Pattern of Antibiotic Resistance of Staphylococcus aureus Isolated from Poultry in Khartoum State / Sudan.Int.J.Curr.Microbiol.App.Sci. 13(10): 213-222. doi: https://doi.org/10.20546/ijcmas.2024.1310.026
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations