Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:10, October, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(10): 161-173
DOI: https://doi.org/10.20546/ijcmas.2024.1310.021


In vitro Screening of PPFM Isolates for Water Stress Tolerance in Paddy
N. K. Riyas1*, K. S. Meenakumari1, Elizabeth K. Syriac2, R. Beena3 and P. Shalini Pillai2
1Department of Agricultural Microbiology,
2Department of Agronomy,
3Department of Plant Physiology, College of Agriculture, Vellayani-695522, Thiruvananthapuram, Kerala Agricultural University, Kerala, India
*Corresponding author
Abstract:

Rice (Oryza sativa L.) is one of the most important field crop after wheat in the world providing staple food to the millions. Drought is the most important environmental stress on rice and many efforts have been made to improve crop yield under drought. The present study reveals the response of rice for the drought stress at germination to seedling stages. Mannitol was selected for inducing osmotic stress. For in vitro screening of PPFM isolates for water stress tolerance, 20 isolates of PPFM from paddy were selected from the previous study of M.Sc. (Ag.) thesis work conducted in the Department of Agricultural Microbiology, Vellayani during 2015-2017 on the basis of carotenoid pigment production, IAA production, proline content, seedling vigour index and yield. These isolates were screened by paper towel method for water stress tolerance under in vitro conditions using mannitol for inducing osmotic stress. There were 21 isolates (20 KAU isolates of PPFM and one TNAU isolate) and four water stress levels (1%, 2%, 3% mannitol and control).Osmotic stress was higher in 3 per cent mannitol treatment. Seeds treated with PPFM 26 recorded the highest germination percentage, shoot length and seedling vigour index. The highest root length and shoot dry weight were observed with the isolate PPFM 15 whereas the highest root dry weight was recorded with PPFM 9. Scoring was done to assess the best five isolates and those with higher ranks were selected as better water stress tolerance capacity. Consequently, PPFM 26, PPFM 15, PPFM 38, PPFM 37 and PPFM 35 which secured ranks from 1to 5 were selected as better water stress tolerance.


Keywords: Rice, PPFM, Mannitol, Germination, seedling vigour index


References:

Abdul-Baki, A. A. and Anderson, J. D. 1973. Vigour determination in soybean seed by multiple criteria. Crop Sci. 13: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x

Anber, M. A. H. 2010. Establishment of efficient in vitro method for drought tolerance evaluation in Pelargonium. J. Hortic. Sci. Ornam. Plants, 2 (1): 8-15.

Anitha, K. G. 2010. Enhancing seed germination of mono and dicotyledons through IAA production of PPFM. Trends Soil Sci. Plant Nutr. J. 1: 14-18.

Austin, B. and Goodfellow, M. 1979. Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int. J. Syst. Bacteriol.29:373. https://doi.org/10.1099/00207713-29-4-373

Bartels, D. and Souer, E. 2004. Molecular responses of higher plants to dehydration. In plant responses to abiotic stress. Plant Cell Environ. 4: 9-38.

Basile, D. V., Basile, M. R., Li, Q.Y., and Corpe, W. A. 1985. Vitamin B 12 - stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata Dum. (Hepaticae). Bryologist. 88: 77-81.

Basile, D. V., Slade, L. L., and Corpe, W. A. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bull. Torr. Bot. Club, 96: 711–714.

Bhojwani, S. S. and Razdan, M. K. 1996. Plant tissue culture: theory and practice. Elsevier science, Amsterdam, 767p.

Blum, A. 2011. Drought resistance – is it really a complex trait? Funct. Plant Biol. 38: 753-757. https://doi.org/10.1071/FP11101

Chandrasekaran, P., Sivakumar, R., Nandhitha, G. K., Vishnuveni, M., Boominathan, P., and Senthilkumar, M. 2017. Impact of PPFM and PGRs on seed germination, stress tolerant index and catalase activity in tomato (Solanum lycopersicum L.) under drought. Inter. J. Curr. Microbiol. Appl. Sci. 6 (6): 540-549. https://doi.org/10.20546/ijcmas.2017.606.064

Cirac, C., Ayan, A. K., and Kevseroglu, K. 2004. The effects of light and some presoaking treatments on germination rate of St. John worth (Hypericum perforatum L.) seeds. Pak. J. Biol. Sci. 7: 182-186. https://doi.org/10.3923/pjbs.2004.182.186

Doronina, N. V, Ivanova, E. G., and Trotsenko, Y. A. 2002. New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiol. 71: 116–118. https://doi.org/10.1023/A:1017966820382

Doronina, N. V., Kudinova, L. V., and Trotsenko, Y. A. 2001. Methylovorus
mays
sp. nov.: a new species of aerobic, obligately methylotrophic bacteria associated with plants. Microbiol, 69: 599-603. https://doi.org/10.1007/BF02756815

Dourado, M. N., Camargo Neves, A. A., Santos, D. S., and Araujo, W. L. 2015. Biotechnological and agronomic potential of endophytic pink - pigmented methylotrophic Methylobacterium spp. Biomed. Res. Int. 2015: 909016. https://doi.org/10.1155/2015/909016.

Freyermuth, S. K., Long, R. L., Mathur, S., Holland, M. A., Holstford, T. P., Stebbins, N. E., Morris R. O., and Polacco, J. C. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. In: Lindstorm, M. and Tabita, R. (eds), Microbial growth on Cl compounds, Kluwer Academic Publishers, New York, pp 21-134.

Green, P. N. and Bousfield, I. J. 1982. A taxonomic study of some Gram- negative facultatively methylotrophic bacteria. J. Gen. Microbiol.128: 623-638. https://doi.org/10.1099/00221287-128-3-623.

Green, P. N. and Bousfield, I. J. 1983. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann, 1962) comb. nov.corrig.; Methylobacterium radiotolerans (Ito and Iizuka, 1971) comb. nov.corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow, 1979) comb. nov.Int. J. Syst. Bacteriol. 33 (4): 875-877. https://doi.org/10.1099/00207713-33-4-875

Hadi, F., Ayaz, M., Ali, S., Shafiq, M., Ullah, R., and Jan, A. U. 2014. Comparative effect of polyethylene glycol and mannitol induced drought on growth (in vitro) of canola (Brassica napus), cauliflower (Brassica oleracea) and tomato (Lycopersicon esculentum) seedlings. Int. J. Biosci. 9(4): 34-41.

Hassanein, A. and Dorion, N. 2006. High-efficiency colony formation and whole plant regeneration from mesophyll protoplast of Pelargonium x hortorum ‘Panache sud’. J. Hortic. Sci.Biotechnol. 81(4): 714-720. https://doi.org/10.1080/14620316.2006.11512128

Hassanein, A., Hamama, L., Loridon, K., and Dorion, N. 2009. Direct gene transfer study and transgenic plant regeneration after electroporation into mesophyll protoplasts of Pelargonium x hortorum ‘Panache sud’.Plant Cell Rep, 28: 1521-1530. https://doi.org/10.1007/s00299-009-0751-x

Holland, M. A. (1997). Methylibacterium and plants.Rec. Res.

Dev. Plant Physiol., 1 : 207-213.

Ivanova, E. G., Dornina, N. V., Shepelyakovskaya, A. O., Laman, A. G., Brovko, F. A., and Trotsenko, Y. A. 2000. Facultative obligate aerobic methylobacteria synthesize cytokenins. Microbiol. 69: 646-651.

Ivanova, E. G., Doronina, N. V., and Trotsenko, Y. A. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiol. 70: 392-397. https://doi.org/10.1023/A:1010469708107

Kumar, A. S., Sridar. R., and Uthandi, S. 2017. Mitigation of drought in rice by a phyllosphere bacterium Bacillus altitudinis FD48. Afr. J. Microbiol. Res. 11(45): 1614-1625. https://doi.org/10.5897/AJMR2017.861

Lee, H. S., Madhaiyan, M., Kim, C. W., Choi, S. J., Chung, K. Y., and Sa, T. 2006. Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2-fixing methylotrophic isolates. Biol. Fertil. Soils, 42: 402-408. https://doi.org/10.1007/s00374-006-0083-8

Lidstrom, M. E. 2001. The aerobic methylotrophic bacteria. In:M. Dworkin, M (Ed.), The Prokaryotes, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 223-244.

Liu, J. X., Liao, D. Q., Oane, R., Estenor, L., Yang, X. E., Li, Z. C., and Bennett, J. 2006. Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crop. Res. 97: 87–100. https://doi.org/10.1016/j.fcr.2005.08.019

Madhaiyan, M., Poonguzhali, S., Lee, H. S., Hari, K., and Sundaram, S. P. 2005. Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil. Soils, 41: 350–358. https://doi.org/10.1007/s00374-005-0838-7

Meena, K. K., Kumar, M., Kalyuzhnaya, M. G., Yandigeri, M. S., Singh, D. P., Saxena, A. K., and Arora, D. K. 2012. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek, 101: 777–786. https://doi.org/10.1007/s10482-011-9692-9

Mohamed, M. A. H., Harris, P. C. J., and Henderson, J. 2000. In vitro selection and characterization of a drought clone of Tagetes minuta, Plant Sci. 159: 213-222. https://doi.org/10.1016/s0168-9452(00)00339-3

Patt, T. E., Cole, G. C., and Hanson, R. S. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int.J. Syst. Bacteriol.26:226-229.

Sleator, R. D. and Hill, C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26(1): 49-71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x

Sokoto, M. B. and Muhammad, A. 2014. Response of rice varieties to water stress in Sokoto, Sudan Savannah, Nigeria. J. Biosci. Med. 2(1): 68-74. https://doi.org/10.4236/jbm.2014.21008

Tao, F., Yokozawa, M., Zhang, Z., Hayashi, Y., Grassl, H., and Fu, C. 2004. Variability in climatology and agricultural production in China in association with the East Asian summer monsoon and El Niño Southern Oscillation. Clim. Res. 28(1): 23-30. https://doi.org/10.3354/cr028023

Whittenburry, R., Davies, S. L., and Wilkinson, J. F. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218. https://doi.org/10.1099/00221287-61-2-205

Yaklich, R. W. 1985. Rules for testing seeds. J. Seed Technol. 6 (2): 111-112.

 

Zgallai, H., Steppe, K., and Lemeur, R. 2005. Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol- Induced water deficit. J. of integrative plant Biology.47(12): 1470- 1478. https://doi.org/10.1111/j.1744-7909.2005.00193.x

Zhang, Y. Y., Li, Y., and Gao, T. 2008. Arabidopsis SDIRI enhance drought tolerance in crop plant. Bioscience, Biotechnol. Biochem. 72(8): 2251-2254. https://doi.org/10.1271/bbb.80286

Zhu, X., Gong, H., Chen, G., Wang, S., and Zhang, C. 2005. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J. Arid Environ. 62: 1–14. https://doi.org/10.1016/j.jaridenv.2004.10.010


Download this article as Download

How to cite this article:

Riyas, N. K., K. S. Meenakumari, Elizabeth K. Syriac, R. Beena and Shalini Pillai, P. 2024. In vitro Screening of PPFM Isolates for Water Stress Tolerance in Paddy.Int.J.Curr.Microbiol.App.Sci. 13(10): 161-173. doi: https://doi.org/10.20546/ijcmas.2024.1310.021
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations