|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Down syndrome (DS) is a widespread genetic disorder associated with a range of physical and intellectual disabilities, and it can also lead to several metabolic and health-related issues. Modernization and technological innovation have simplified next-generation sequencing through the use of open-source online software like Galaxy, which enables users to easily share their data and workflow mappings. Current study is to identify candidate genes for DS by performing differential expression of genes. RNA-Seq analysis was performed for different datasets retrieved from the GEO database. The 10 datasets from DS patients and 10 datasets from healthy control were analysed for differentially expressed genes (DEGs). DEGs analysis showed 10 upregulated and 10 downregulated genes with log2FC counts > 2.5 and p-values <0.05. To further investigate these differentially expressed genes (DEGs), WebGestalt was used for comprehensive in silico analysis, visualizing enrichment via volcano plots. Additionally, protein-protein interaction (PPI) networks were constructed using STRING, identifying three gene modules and ten hub genes through Cytoscape cluster analysis. Molecular docking studies were then conducted on these hub genes using PyRx software. This included the addition of polar hydrogen atoms, the assignment of partial charges, and the removal of water molecules to prepare for efficient molecular docking. This research enhances our understanding of gene interactions and protein-phytochemical binding mechanisms, thereby contributing to therapeutic advancements in the biopharmaceutical sector.
Anders, S. and Huber, W., 2012. Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL), 10, p.f1000research.
Antonarakis, S. E., Skotko, B. G., Rafii, M. S., Strydom, A., Pape, S. E., Bianchi, D. W., Sherman, S. L. and Reeves, R. H., 2020. Down syndrome. Nature Reviews Disease Primers, 6(1), p.9. https://doi.org/10.1038/s41572-019-0143-7
Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M. and Yefanov, A., 2012. NCBI GEO: archive for functional genomics data sets—update. Nucleic acids research, 41(D1), pp.D991-D995. https://doi.org/10.1093/nar/gks1193
Blessy, J. J. and Sharmila, D. J. S., 2015. Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex. Journal of Biomolecular Structure and Dynamics, 33(5), pp.1126-1139.
Blessy, J. J., Jawahar, D. and Sharmila, D. J. S., 2019. Multivalent interactions of nano-spaced dimers of N-acetylneuraminic acid analogues complex with H5N1 influenza viral neuraminidase and haemagglutinin—A molecular dynamics investigation. Int. J. Curr. Microbiol. Appl. Sci, 8(01), pp.1517-1546. https://doi.org/10.20546/ijcmas.2019.801.161
Blessy, J. J., Shanmugam, N. S., Veluraja, K. and Gromiha, M. M., 2023. Sialic acid analog as inhibitor for human coronavirus OC43-a study by molecular dynamics simulations. Journal of Carbohydrate Chemistry, 42(4-6), pp.197-215.
Chapman, L. R., Ramnarine, I. V., Zemke, D., Majid, A. and Bell, S. M., 2024. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes?. International Journal of Molecular Sciences, 25(5), p.2968. https://doi.org/10.3390/ijms25052968
Dallakyan, S. and Olson, A. J., 2015. Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, pp.243-250. https://doi.org/10.1007/978-1-4939-2269-7_19
Fortea, J., McGlinchey, E., Espinosa, J. M. and Rafii, M. S., 2024. Addressing challenges in health care and research for people with Down syndrome. The Lancet, 403(10439), pp.1830-1833. https://doi.org/10.1016/S0140-6736(24)00478-1
Jalili, V., Afgan, E., Gu, Q., Clements, D., Blankenberg, D., Goecks, J., Taylor, J. and Nekrutenko, A., 2020. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic acids research, 48(W1), pp.W395-W402. https://doi.org/10.1093/nar/gkaa434
Khoury, M. J. and Erickson, J. D., 1992. Can maternal risk factors influence the presence of major birth defects in infants with Down syndrome?.American journal of medical genetics, 43(6), pp.1016-1022. https://doi.org/10.1002/ajmg.1320430620
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B. and Zaslavsky, L., 2019. PubChem 2019 update: improved access to chemical data. Nucleic acids research, 47(D1), pp.D1102-D1109. https://doi.org/10.1093/nar/gky1033
Kohl, M., Wiese, S. and Warscheid, B., 2011. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics: from standards to applications, pp.291-303. https://doi.org/10.1007/978-1-60761-987-1_18
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. and Zhang, B., 2019. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic acids research, 47(W1), pp.W199-W205. https://doi.org/10.1093/nar/gkz401
Meldrum, C., Doyle, M. A. and Tothill, R. W., 2011. Next-generation sequencing for cancer diagnostics: a practical perspective. The Clinical Biochemist Reviews, 32(4), p.177.
Park, H. J., Cho, H. Y. and Cha, D. H., 2021. The amniotic fluid cell-free transcriptome provides novel information about fetal development and placental cellular dynamics. International journal of molecular sciences, 22(5), p.2612. https://doi.org/10.3390/ijms22052612
Plaiasu, V., 2017. Down syndrome–genetics and cardiogenetics. Maedica, 12(3), p.208.
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P. and Jensen, L. J., 2021. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research, 49(D1), pp.D605-D612. https://doi.org/10.1093/nar/gkaa1074
Wojcik, M. H., Reimers, R., Poorvu, T. and Agrawal, P. B., 2020. Genetic diagnosis in the fetus. Journal of Perinatology, 40(7), pp.997-1006. https://doi.org/10.1038/s41372-020-0627-z
Yu, Y. E., Xing, Z., Do, C., Pao, A., Lee, E. J., Krinsky-McHale, S., Silverman, W., Schupf, N. and Tycko, B., 2020. Genetic and epigenetic pathways in Down syndrome: insights to the brain and immune system from humans and mouse models. Progress in brain research, 251, pp.1-28. https://doi.org/10.1016/bs.pbr.2019.09.002