Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:9, September, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(9): 181-193
DOI: https://doi.org/10.20546/ijcmas.2024.1309.020


Screening and Identification of Multi-Metal Resistance Halophilic Bacteria from Different Habitats of Odisha, India
Itishree Behera* and Umesh Chandra Naik
Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University,
Cuttack-753003, Odisha, India
*Corresponding author
Abstract:

The current study focuses on the screening and identification of halophilic bacteria from different habitats of Odisha for selecting a potentmulti-metal resistance bacterium. The halophilic bacteria were isolated and screened with NaCl concentration using 0%-24% (w/v). The selected halophiles were studied for their growth, colony morphology, sodium content, flavonoid content and multi-metal resistance. The isolated bacteria were found to be moderately halophilic to slight halophilic in nature due to the presence of salt such as sodium, magnesium and bicarbonate in the collected samples. The result showed the utmost number of viable cells (1.65 to 5.40 cfu/mL) is due to the hypersaline nature making the bacterial cells suitable to grow under 15%-18% (w/v) NaCl concentration. They were found to be gram-positive and organized in single rods and clusters. The presence of sodium (0.018-0.249 mg/L) were confirmed with the help of flame photometry in the halophiles. The flavonoid content (0.074-0.330 mg/mL) indicated the presence of antioxidant activity.AS’S-I strain found to be potent multi-metal resistant halophilic bacteria analysed through SEM analysis. Molecular identification of AS’S-I confirmed the Halomonassp. The study suggests that AS’S-I halophilic bacteria could be used for the multi-metal removal.


Keywords: Isolation, Salinity, Halophilic bacteria, Biosorption, Heavy metals


References:

Abbas, N., Hussain, S., Azeem, F., Shahzad, T., Bhatti, S. H., Imran, M., Ahmad, Z., Maqbool, Z. and Abid, M. (2016). Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress. World Journal of Microbiology and Biotechnology, 32, 1-12. https://doi.org/10.1007/s11274-016-2141-1

Baati, H., Siala, M., Azri, C., Ammar, E., Dunlap, C. and Trigui, M. (2022). Genomic analysis of heavy metal-resistant Halobacterium salinarum isolated from Sfax solar saltern sediments. Extremophiles, 26(2), 25. https://doi.org/10.1007/s00792-022-01273-0

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972

Biswas, J. K., Mondal, M., Rinklebe, J., Sarkar, S. K., Chaudhuri, P., Rai, M., Shaheen, S. M., Song, H.and Rizwan, M. (2017). Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environmental Geochemistry and Health, 39, 1583-1593. https://doi.org/10.1007/s10653-017-9950-5

Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G. andPainho, M. (2005). Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators, 5(2), 151-169. https://doi.org/10.1016/j.ecolind.2005.02.001

Chen, L., Wang, G., Bu, T., Zhang, Y., Wang, Y., Liu, M. and Lin, X. (2010). Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World Journal of Microbiology and Biotechnology, 26, 879-888. https://doi.org/10.1007/s11274-009-0247-4

Chun-Ming, C. H. I., Chang-Wei, Z. H. A. O., Xiao-Jing, S. U. N. and Zhi-Chun, W. A. N. G. (2011). Estimating exchangeable sodium percentage from sodium adsorption ratio of salt-affected soil in the Songnen Plain of Northeast China. Pedosphere, 21(2), 271-276. https://doi.org/10.1016/S1002-0160(11)60127-6

Corral, P., Amoozegar, M. A. and Ventosa, A. (2019). Halophiles and their biomolecules: recent advances and future applications in biomedicine. Marine Drugs, 18(1), 33. https://doi.org/10.3390/md18010033

Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K. and Kannan, R. (2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. African Journal of Microbiology Research, 7(44), 5082-5089. https://doi.org/10.5897/AJMR2013.6003

Das, P., Chatterjee, S., Behera, B. K., Dangar, T. K., Das, B. K. and Mohapatra, T. (2019). Isolation and characterization of marine bacteria from East Coast of India: functional screening for salt stress tolerance. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01869

Daughney, C. J., Siciliano, S. D., Rencz, A. N., Lean, D. and Fortin, D. (2002). Hg (II) adsorption by bacteria: a surface complexation model and its application to shallow acidic lakes and wetlands in Kejimkujik National Park, Nova Scotia, Canada. Environmental Science and Technology, 36(7), 1546-1553.https://doi.org/10.1021/es010713x

Delgado-García, M., Contreras-Ramos, S. M., Rodríguez, J. A., Mateos-Díaz, J. C., Aguilar, C. N. and Camacho-Ruíz, R. M. (2018). Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon, 4(11). e00954. https://doi.org/10.1016/j.heliyon.2018.e00954

Dharmendra, S., Kumar, M. R., Chinmayee, A., Ranjan, S. D. and Ranjan, P. C. (2020). Assessment of marine sediment contamination and detection of their potential sources at Paradip port, East Coast of India. Research Journal of Chemistry and Environment, 24(6).

Diba, H., Cohan, R. A., Salimian, M., Mirjani, R., Soleimani, M. and Khodabakhsh, F. (2021). Isolation and characterization of halophilic bacteria with the ability of heavy metal bioremediation and nanoparticle synthesis from Khara salt lake in Iran. Archives of Microbiology, 203, 3893-3903. https://doi.org/10.1007/s00203-021-02380-w

Dookie, S., Jaikishun, S. and Ansari, A. A. (2022). Soil and water relations in mangrove ecosystems in Guyana. Geology, Ecology, and Landscapes, 445-469. https://doi.org/10.1080/24749508.2022.2142186

El Bilali, A., Taleb, A., Nafii, A., Alabjah, B. and Mazigh, N. (2021). Prediction of sodium adsorption ratio and chloride concentration in a coastal aquifer under seawater intrusion using machine learning models. Environmental Technology and Innovation, 23, 101641. https://doi.org/10.1016/j.eti.2021.101641

Feng, T. C., Cui, C. Z., Dong, F., Feng, Y. Y., Liu, Y. D. and Yang, X. M. (2012). Phenanthrene biodegradation by halophilic Martelella sp. AD?3. Journal of Applied Microbiology, 113(4), 779-789. https://doi.org/10.1111/j.1365-2672.2012.05386.x

Ferati, F., Kerolli-Mustafa, M. and Kraja-Ylli, A. (2015). Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environmental Monitoring and Assessment, 187(6):338. https://doi.org/10.1007/s10661-015-4524-4.

Fitri, D. A., Asih, E. N. N., Kartika, A. G. D., Agustina, N., Fadholi, B., Dewi, K. and Efendy, M. (2022). Morphological characteristics of halophilic bacteria in traditional salt production. Journal of Marine Resources and Coastal Management, 3(1), 1-7. https://doi.org/10.29080/mrcm.v3i01.1360

Gharaibeh, M. A., Albalasmeh, A. A., Pratt, C., and El Hanandeh, A. (2021). Estimation of exchangeable sodium percentage from sodium adsorption ratio of salt-affected soils using traditional and dilution extracts, saturation percentage, electrical conductivity, and generalized regression neural networks. Catena, 205, 105466. https://doi.org/10.1016/j.catena.2021.105466

Halder, U., Biswas, R., Kabiraj, A., Deora, R., Let, M., Roy, R. K., Chitikineni, A., Majhi, K., Sarkar, S., Dutta, B., Laha, A., Datta, A., Khan, D., Varshney, K. R., Saha, D., Chattopadhyay, S. and Bandopadhyay, R. (2022). Genomic, morphological, and biochemical analyses of a multi-metal resistant but multi-drug susceptible strain of Bordetella petrii from hospital soil. Scientific Reports, 12(1), 8439. https://doi.org/10.1038/s41598-022-12435-7

Harikrishnan, N., Ravisankar, R., Chandrasekaran, A., Gandhi, M. S., Kanagasabapathy, K. V., Prasad, M. V. R., and Satapathy, K. K. (2017). Assessment of heavy metal contamination in marine sediments of east coast of Tamil Nadu affected by different pollution sources. Marine Pollution Bulletin, 121(1-2), 418-424. https://doi.org/10.1016/j.marpolbul.2017.05.047

Harmesh Sahay, H. S., Surendra Singh, S. S., Rajeev Kaushik, R. K., Saxena, A. K., and Arora, D. K. (2011). Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India. Biologia, 66(5), 741—747. https://doi.org/10.2478/s11756-011-0094-2

Kharangate-Lad, A., and Bhosle, S. (2016). Studies on siderophore and pigment producedby an adhered bacterial strain Halobacillus trueperi MXM-16 from the mangrove ecosystem of Goa, India. Indian Journal of Microbiology, 56, 461-466. https://doi.org/10.1007/s12088-016-0591-7

Krishnamurthy, M., Uthaya, C. J., Thangavel, M., Annadurai, V., Rajendran, R., and Gurusamy, A. (2020). Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohydrate Polymers, 227, 115369. https://doi.org/10.1016/j.carbpol.2019.115369

León, M. J., Hoffmann, T., Sánchez-Porro, C., Heider, J., Ventosa, A., and Bremer, E. (2018). Compatible solute synthesis and import by the moderate halophile Spiribactersalinus: physiology and genomics. Frontiers in Microbiology, 9, 108. https://doi.org/10.3389/fmicb.2018.00108

Lu, Z. Y., Guo, X. J., Li, H., Huang, Z. Z., Lin, K. F., and Liu, Y. D. (2015). High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response. International Journal of Molecular Sciences, 16(6), 11834-11848. https://doi.org/10.3390/ijms160611834

Ma, H., Wei, M., Wang, Z., Hou, S., Li, X., and Xu, H. (2020). Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. Journal of Hazardous Materials, 388, 122065. https://doi.org/10.1016/j.jhazmat.2020.122065

Matarredona, L., Camacho, M., Zafrilla, B., Bravo-Barrales, G., Esclapez, J., and Bonete, M. J. (2021). The survival of Haloferax mediterranei under stressful conditions. Microorganisms, 9(2), 336. https://doi.org/10.3390/microorganisms9020336

Mathivanan, K., and Rajaram, R. (2014). Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chemistry and Ecology, 30(7), 622-635. https://doi.org/10.1080/02757540.2014.889125

Mishra, R. R., Prajapati, S., Das, J., Dangar, T. K., Das, N., and Thatoi, H. (2011). Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere, 84(9), 1231-1237. https://doi.org/10.1016/j.chemosphere.2011.05.025

Mohapatra, R. K., Parhi, P. K., Thatoi, H., and Panda, C. R. (2017). Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chemistry and Ecology, 33(2), 114-130. https://doi.org/10.1080/02757540.2016.1275586

Mussa, S. A. B., Elferjani, H. S., Haroun, F. A., and Abdelnabi, F. F. (2009). Determination of available nitrate, phosphate and sulfate in soil samples. International Journal of PharmTech Research, 1(3), 598-604.

Nithya, C., Gnanalakshmi, B., and Pandian, S. K. (2011). Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Marine Environmental Research, 71(4), 283-294. https://doi.org/10.1016/j.marenvres.2011.02.003

Orji, O. U., Awoke, J. N., Aja, P. M., Aloke, C., Obasi, O. D., Alum, E. U., Udu-Ibiam, O. E. and Oka, G. O. (2021). Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Heliyon, 7(7):e07512. https://doi.org/10.1016/j.heliyon.2021.e07512.

Pérez-Inocencio, J., Iturriaga, G., Aguirre-Mancilla, C. L., Ramírez-Pimentel, J. G., Vásquez-Murrieta, M. S., and Álvarez-Bernal, D. (2022). Identification of halophilic and halotolerant bacteria from the root soil of the halophyte Sesuvium verrucosum Raf. Plants, 11(23), 3355. https://doi.org/10.3390/plants11233355

Prathiba, S., and Jayaraman, G. (2018). Evaluation of the anti-oxidant property and cytotoxic potential of the metabolites extracted from the bacterial isolates from mangrove Forest and saltern regions of South India. Preparative Biochemistry and Biotechnology, 48(8), 750-758. https://doi.org/10.1080/10826068.2018.1508038

Rathakrishnan, D., and Gopalan, A. K. (2022). Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environmental Challenges, 6, 100426. https://doi.org/10.1016/j.envc.2021.100426

Rohban, R., Amoozegar, M. A., and Ventosa, A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. Journal of Industrial Microbiology and Biotechnology, 36(3), 333-340. https://doi.org/10.1007/s10295-008-0500-0

Sahoo, H., Kumari, S., and Naik, U. C. (2021). Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries. Archives of Microbiology, 203(9), 5425-5435. https://doi.org/10.1007/s00203-021-02523-z

Sahoo, S., and Goli, D. (2020). Bioremediation of lead by a halophilic bacteria Bacillus pumilus isolated from the mangrove regions of Karnataka. International Journal of Scientific Research, 9, 1337-1343. https://doi.org/10.21275/ART20204172

Saranya, K., Sundaramanickam, A., Shekhar, S., Meena, M., Sathishkumar, R. S., and Balasubramanian, T. (2018). Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. Journal of Environmental Management, 222, 396-401. https://doi.org/10.1016/j.jenvman.2018.05.083

Sar?yar-Akbulut, B., Salman-Dilgimen, A., Ceylan, S., Perk, S., Denizci, A. A., and Kazan, D. (2008). Preliminary phenotypic characterization of newly isolated halophilic microorganisms by footprinting: a rapid metabolome analysis. Archives of Microbiology, 189, 19-26. https://doi.org/10.1007/s00203-007-0289-7

Selvarajan, R., Sibanda, T., Tekere, M., Nyoni, H., andMeddows-Taylor, S. (2017). Diversity analysis and bioresource characterization of halophilic bacteria isolated from a South African saltpan. Molecules, 22(4), 657. https://doi.org/10.3390/molecules22040657

Sharma, A., Dev, K., Sourirajan, A., and Choudhary, M. (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Journal of Genetic Engineering and Biotechnology, 19(1), 99. https://doi.org/10.1186/s43141-021-00186-3

Shukla, P. J., Nathani, N. M. and Dave, B. P. (2017). Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. International Journal of Research in Biosciences, 6: 20-32.

Sodhi, K. K., Kumar, M., and Singh, D. K. (2020). Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Applied Sciences, 2, 1885. https://doi.org/10.1007/s42452-020-03583-4

Subramanian, P., and Gurunathan, J. (2020). Differential production of pigments by halophilic bacteria under the effect of salt and evaluation of their antioxidant activity. Applied Biochemistry and Biotechnology, 190, 391-409. https://doi.org/10.1007/s12010-019-03107-w

Sumit Kumar, S. K., Ram Karan, R. K., Sanjay Kapoor, S. K., Singh, S. P., and Khare, S. K. (2012). Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazilian Journal of Microbiology, 43(4): 1595-1603. https://doi.org/10.1590/S1517-838220120004000044

Swain, S., Pattanayak, A. A., Sahu, B. K., Satapathy, D. R., and Panda, C. R. (2021). Time-series monitoring and ecological risk assessment of heavy metal pollution in Mahanadi estuary, east coast of India. Regional Studies in Marine Science, 47, 101923. https://doi.org/10.1016/j.rsma.2021.101923

Syed, S., and Chinthala, P. (2015). Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica, 2015(1), 319760. https://doi.org/10.1155/2015/319760

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., and Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology: Environmental Toxicology, 3, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6

Vahed, S. Z., Forouhandeh, H., Hassanzadeh, S., Klenk, H. P., Hejazi, M. A., and Hejazi, M. S. (2011). Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology, 80, 834-841.

Van Thuoc, D., Loan, T. T., and Tra, N. T. (2021). Accumulation of ectoines by halophilic bacteria isolated from fermented shrimp paste: An adaptation mechanism to salinity, temperature, and Ph stress. Current Microbiology, 78, 2355-2366. https://doi.org/10.1007/s00284-021-02481-1

Velho-Pereira, S., Parvatkar, P., and Furtado, I. J. (2015). Evaluation of antioxidant producing potential of halophilic bacterial bionts from marine invertebrates. Indian Journal of Pharmaceutical Sciences, 77(2), 183 –189. https://doi.org/10.4103/0250-474x.156572

Weinisch, L., Kühner, S., Roth, R., Grimm, M., Roth, T., Netz, D. J., Pierik, A. J. and Filker, S. (2018). Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLoS Biology, 16(1), e2003892. https://doi.org/10.1371/journal.pbio.2003892

Yin, Y. L., Li, F. L., and Wang, L. (2022). Halomonas salinarum sp. nov., a moderately halophilic bacterium isolated from saline soil in Yingkou, China. Archives of Microbiology, 204(8), 466. https://doi.org/10.1007/s00203-022-03032-3  


Download this article as Download

How to cite this article:

Itishree Behera and Umesh Chandra Naik. 2024. Screening and Identification of Multi-Metal Resistance Halophilic Bacteria from Different Habitats of Odisha.Int.J.Curr.Microbiol.App.Sci. 13(9): 181-193. doi: https://doi.org/10.20546/ijcmas.2024.1309.020
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations