Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:9, September, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(9): 159-164
DOI: https://doi.org/10.20546/ijcmas.2024.1309.017


Parental Polymorphism Survey Between Heat Tolerant N22 and Heat Susceptible 166-30S Using SSRs in Rice
M. Suchandranath Babu1, V. Vishnu Prasanth1, T. Vishnu Kiran1, Satendra K. Mangrauthia1, R. Voleti1, P. Sudhakar2, A. Krishna Satya2 and Sarla Neelamraju1*
1ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
2Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
*Corresponding author
Abstract:

Molecular marker technology stands out as a pivotal innovation to accelerate the progress in modern rice breeding, contributing to the development of improved varieties that can meet the challenges of global food production and climate change. Markers such as SSRs provide the broad genetic resolution needed to locate QTLs fairly accurately, which can then be easily used in breeding programs to improve crop traits. Mapping QTLs for traits associated with heat tolerance is important to develop heat resilient rice varieties. In the present study polymorphic markers were identified between two highly contrasting heat tolerant rice lines the aus variety N22 and heat susceptible Swarna x O. nivara introgression line 166-30S. A total of 748 randomly selected SSR markers covering all the 12 chromosomes were assessed and 110 distinctly polymorphic markers identified.


Keywords: Heat tolerance, SSR, N22, 166-30S, Polymorphism


References:

Bharathkumar, S., Pragnya, P. J., Jitendra, K., Archana, B., Singh, O. N., and Reddy, J. N. 2014. Identification of rice germplasms associated with microsatellite (SSR) markers for heat tolerance at reproductive stage and expression of heat stress related gene. Indian Res. J. Genet. Biotech. 6: 424-27.

Buu, B. C., Ha, P. T. T., Tam, B. P., Nhien, T. T., Hieu, N. V., Phuoc, N. T., Minh, L. T., Giang, L. H., and Lang, N. T. 2014. Quantitative trait loci associated with heat tolerance in rice (Oryza sativa L.). Plant Breed. Biotech. 2: 14-24. https://doi.org/10.9787/PBB.2014.2.1.014

Cao L, Zhao J, Zhan X, Li D, He L, Cheng S. 2003. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci 17:223–227

Casartelli A, Riewe D, Hubberten H M, Altmann T, Hoefgen R, Heuer S (2018) Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11:1–16. https://doi.org/10.1186/s12284-017-0189-7

Doyle J J and Doyle J L.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

Howell, W. M., P. C. Calder and R. F. Grimble. 2002. Gene polymorphisms, inflammatory diseases and cancer. Proc. Nutr. Soc., 61: 447-456. https://doi.org/10.1079/pns2002186

Jagadish S V K, Craufurd P, Shi W, Oane R. A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). 2014. Funct Plant Biol. 41:48–55. https://doi.org/10.1071/FP13086.

Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) J Exp Bot. 61(1):143–156. https://doi.org/10.1093/jxb/erp289.  

Jagadish, S. V. K., Muthurajan, R., Rang, Z. W., Malo, R., Heuer, S., Bennett, J., et al., 2011. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice, 4, 1–11. https://doi.org/10.1007/s12284-011-9059-x

Nguyen, T.; Shen, S.; Cheng, M.; Chen, Q. Identification of QTLs for Heat Tolerance at the Flowering Stage Using Chromosome Segment Substitution Lines in Rice. 2022. Genes 13, 2248. https://doi.org/10.3390/genes13122248  

Poli, Y., Ramana Kumari, B., Panigrahy, M., Vinukonda, V. P., Nageswara Rao, D., Voleti, S. R., et al., 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6, 36. https://doi.org/10.1186/1939-8433-6-36

Prasad, P., Boote, K., Allen, L., Sheehy, J., & Thomas, J. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95, 398–411. https://doi.org/10.1016/j.fcr.2005.04.008

Prasanth, V. V., K. R. Basava, M. S. Babu, T. V. G. N. Venkata, S. J. S. Rama Devi, S. K. Mangrauthia, et al., 2016. Field level evaluation of rice introgression lines for heat tolerance and validation of markers linked to spikelet fertility, Physiol. Mol. Biol. Plants 22.179 –192. https://doi.org/10.1007/s12298-016-0350-6

Sailaja, B., Anjum, Nazreen, Vishnu Prasanth, V., Sarla, N., Subrahmanyam, D., Voleti, S. R., et al., 2014. Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Molecular Biology Reporter, 32, 1228–1240 https://doi.org/10.1007/s11105-014-0728-y

Sailaja, B., Subrahmanyam, D., Neelamraju, S., Vishnukiran, T., Rao, Y. V., Vijayalakshmi, P., et al., 2015. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers of Plant Science, 6, 1044 https://doi.org/10.3389/fpls.2015.01044

Sar, P., Gupta, S., Behera, M. et al., Exploring Genetic Diversity within aus Rice Germplasm: Insights into the Variations in Agro-morphological Traits. Rice 17, 20 (2024). https://doi.org/10.1186/s12284-024-00700-4

Singh, A. K.; Kumar, D.; Gemmati, D.; Ellur, R. K.; Singh, A.; Tisato, V.; Dwivedi, D. K.; Singh, S. K.; Kumar, K.; Khan, N. A.; et al., Investigating Genetic Diversity and Population Structure in Rice Breeding from Association Mapping of 116 Accessions Using 64 Polymorphic SSR Markers. Crops 2024, 4, 180-194. https://doi.org/10.3390/crops4020014

Stephen, K.; Aparna, K.; Beena, R.; Sah, R. P.; Jha, U. C.; Behera, S. Identi?cation of simple sequence repeat markers linked to heat tolerance in rice using bulked segregant analysis in F (2) population of NERICA-L 44 x Uma.2023. Front. Plant Sci.2023,14, 1113838 https://doi.org/10.3389/fpls.2023.1113838

Vishnu Kiran, T., Sravan Raju, N., Senguttuvel, P., Vijayalakshmi, P., Venkateswara Rao, Y., Surekha, K., Neeraja, C. N., & Voleti, S. R. 2012. Screening of hybrids and parental lines for association of physiological traits to identify heat-tolerant and nitrogen-use efficient rice genotypes. 6th IHRS (pp. 169–177)

Waghmare, S. G., Sindhumole, P., Shylaja, M. R., Mathew, D., Francies, R. M., Abida, P. S. and Sajini, S. 2018. Analysis of simple sequence repeat (SSR) polymorphism between N22 and Uma rice varieties for marker assisted selection. Electronic J. Plant. Breed., 511-517

Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., Zhang, J., Tu, J., and Zhong, X. 2013. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. J. Heredity 104(2): 287-294. https://doi.org/10.1093/jhered/ess103

Ye, C., Argayoso, M. A., Redoña, E. D., Sierra, S. N., Laza, M. A., Dilla, C. J., Mo, Y., Thomson, M. J., Chin, J., Delaviña, C. B., Diaz, G. Q., & Hernandez, J. E. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding, 131(1),33-41. https://doi.org/10.1111/j.1439-0523.2011.01924.x

Zhang C., Li G., Chen T., Feng B., Fu W., Yan J., et al., 2018. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice (N Y) 11 (1), 14. https://doi.org/10.1186/s12284-018-0206-5

Zhang, G., Chen, L., Xiao, G., Xiao, Y., Chen, X., and Zhang, S. 2009. Bulked segregant analysis to detect QTL related to heat tolerance in rice using SSR markers. Agric. Sci. China 8(4): 482–487.

Zhao, Z. G., Jiang, L., Xiao, Y. H., Zhang, W. W., Zhai, H. Q., and Wan, J. M. 2006. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agron. Sin. 32: 640-644



Download this article as Download

How to cite this article:

Suchandranath Babu, M., V. Vishnu Prasanth, T. Vishnu Kiran, Satendra K. Mangrauthia, S. R. Voleti, P. Sudhakar, A. Krishna Satya and Sarla Neelamraju. 2024. Parental Polymorphism Survey Between Heat Tolerant N22 and Heat Susceptible 166-30S Using SSRs in Rice.Int.J.Curr.Microbiol.App.Sci. 13(9): 159-164. doi: https://doi.org/10.20546/ijcmas.2024.1309.017
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations