|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Molecular marker technology stands out as a pivotal innovation to accelerate the progress in modern rice breeding, contributing to the development of improved varieties that can meet the challenges of global food production and climate change. Markers such as SSRs provide the broad genetic resolution needed to locate QTLs fairly accurately, which can then be easily used in breeding programs to improve crop traits. Mapping QTLs for traits associated with heat tolerance is important to develop heat resilient rice varieties. In the present study polymorphic markers were identified between two highly contrasting heat tolerant rice lines the aus variety N22 and heat susceptible Swarna x O. nivara introgression line 166-30S. A total of 748 randomly selected SSR markers covering all the 12 chromosomes were assessed and 110 distinctly polymorphic markers identified.
Bharathkumar, S., Pragnya, P. J., Jitendra, K., Archana, B., Singh, O. N., and Reddy, J. N. 2014. Identification of rice germplasms associated with microsatellite (SSR) markers for heat tolerance at reproductive stage and expression of heat stress related gene. Indian Res. J. Genet. Biotech. 6: 424-27.
Buu, B. C., Ha, P. T. T., Tam, B. P., Nhien, T. T., Hieu, N. V., Phuoc, N. T., Minh, L. T., Giang, L. H., and Lang, N. T. 2014. Quantitative trait loci associated with heat tolerance in rice (Oryza sativa L.). Plant Breed. Biotech. 2: 14-24. https://doi.org/10.9787/PBB.2014.2.1.014
Cao L, Zhao J, Zhan X, Li D, He L, Cheng S. 2003. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci 17:223–227
Casartelli A, Riewe D, Hubberten H M, Altmann T, Hoefgen R, Heuer S (2018) Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11:1–16. https://doi.org/10.1186/s12284-017-0189-7
Doyle J J and Doyle J L.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Howell, W. M., P. C. Calder and R. F. Grimble. 2002. Gene polymorphisms, inflammatory diseases and cancer. Proc. Nutr. Soc., 61: 447-456. https://doi.org/10.1079/pns2002186
Jagadish S V K, Craufurd P, Shi W, Oane R. A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). 2014. Funct Plant Biol. 41:48–55. https://doi.org/10.1071/FP13086.
Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) J Exp Bot. 61(1):143–156. https://doi.org/10.1093/jxb/erp289.
Jagadish, S. V. K., Muthurajan, R., Rang, Z. W., Malo, R., Heuer, S., Bennett, J., et al., 2011. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice, 4, 1–11. https://doi.org/10.1007/s12284-011-9059-x
Nguyen, T.; Shen, S.; Cheng, M.; Chen, Q. Identification of QTLs for Heat Tolerance at the Flowering Stage Using Chromosome Segment Substitution Lines in Rice. 2022. Genes 13, 2248. https://doi.org/10.3390/genes13122248
Poli, Y., Ramana Kumari, B., Panigrahy, M., Vinukonda, V. P., Nageswara Rao, D., Voleti, S. R., et al., 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6, 36. https://doi.org/10.1186/1939-8433-6-36
Prasad, P., Boote, K., Allen, L., Sheehy, J., & Thomas, J. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95, 398–411. https://doi.org/10.1016/j.fcr.2005.04.008
Prasanth, V. V., K. R. Basava, M. S. Babu, T. V. G. N. Venkata, S. J. S. Rama Devi, S. K. Mangrauthia, et al., 2016. Field level evaluation of rice introgression lines for heat tolerance and validation of markers linked to spikelet fertility, Physiol. Mol. Biol. Plants 22.179 –192. https://doi.org/10.1007/s12298-016-0350-6
Sailaja, B., Anjum, Nazreen, Vishnu Prasanth, V., Sarla, N., Subrahmanyam, D., Voleti, S. R., et al., 2014. Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Molecular Biology Reporter, 32, 1228–1240 https://doi.org/10.1007/s11105-014-0728-y
Sailaja, B., Subrahmanyam, D., Neelamraju, S., Vishnukiran, T., Rao, Y. V., Vijayalakshmi, P., et al., 2015. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers of Plant Science, 6, 1044 https://doi.org/10.3389/fpls.2015.01044
Sar, P., Gupta, S., Behera, M. et al., Exploring Genetic Diversity within aus Rice Germplasm: Insights into the Variations in Agro-morphological Traits. Rice 17, 20 (2024). https://doi.org/10.1186/s12284-024-00700-4
Singh, A. K.; Kumar, D.; Gemmati, D.; Ellur, R. K.; Singh, A.; Tisato, V.; Dwivedi, D. K.; Singh, S. K.; Kumar, K.; Khan, N. A.; et al., Investigating Genetic Diversity and Population Structure in Rice Breeding from Association Mapping of 116 Accessions Using 64 Polymorphic SSR Markers. Crops 2024, 4, 180-194. https://doi.org/10.3390/crops4020014
Stephen, K.; Aparna, K.; Beena, R.; Sah, R. P.; Jha, U. C.; Behera, S. Identi?cation of simple sequence repeat markers linked to heat tolerance in rice using bulked segregant analysis in F (2) population of NERICA-L 44 x Uma.2023. Front. Plant Sci.2023,14, 1113838 https://doi.org/10.3389/fpls.2023.1113838
Vishnu Kiran, T., Sravan Raju, N., Senguttuvel, P., Vijayalakshmi, P., Venkateswara Rao, Y., Surekha, K., Neeraja, C. N., & Voleti, S. R. 2012. Screening of hybrids and parental lines for association of physiological traits to identify heat-tolerant and nitrogen-use efficient rice genotypes. 6th IHRS (pp. 169–177)
Waghmare, S. G., Sindhumole, P., Shylaja, M. R., Mathew, D., Francies, R. M., Abida, P. S. and Sajini, S. 2018. Analysis of simple sequence repeat (SSR) polymorphism between N22 and Uma rice varieties for marker assisted selection. Electronic J. Plant. Breed., 511-517
Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., Zhang, J., Tu, J., and Zhong, X. 2013. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. J. Heredity 104(2): 287-294. https://doi.org/10.1093/jhered/ess103
Ye, C., Argayoso, M. A., Redoña, E. D., Sierra, S. N., Laza, M. A., Dilla, C. J., Mo, Y., Thomson, M. J., Chin, J., Delaviña, C. B., Diaz, G. Q., & Hernandez, J. E. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding, 131(1),33-41. https://doi.org/10.1111/j.1439-0523.2011.01924.x
Zhang C., Li G., Chen T., Feng B., Fu W., Yan J., et al., 2018. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice (N Y) 11 (1), 14. https://doi.org/10.1186/s12284-018-0206-5
Zhang, G., Chen, L., Xiao, G., Xiao, Y., Chen, X., and Zhang, S. 2009. Bulked segregant analysis to detect QTL related to heat tolerance in rice using SSR markers. Agric. Sci. China 8(4): 482–487.
Zhao, Z. G., Jiang, L., Xiao, Y. H., Zhang, W. W., Zhai, H. Q., and Wan, J. M. 2006. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agron. Sin. 32: 640-644