|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Gastric ulcers represent a significant global health burden, affecting millions of individuals annually. Helicobacter pylori is an important pathogen in humans and is considered the main cause of refractory gastritis. It is also associated with the development of peptic ulcers, atrophic gastritis, and gastric tumors. This study aimed to detect the presence of H. pylori in stool samples from patients with gastric ulcers using polymerase chain reaction (PCR) and targeting the cagA, vacA, and ureC genes. Stool samples were collected from 200 symptomatic patients and subjected to culture analysis to isolate H. pylori. The presence of H. pylori isolates was confirmed by culture analysis, Gram staining, biochemical assays, and PCR tests targeting the cagA, vacA, and ureC genes. Of the 200 stool samples, 125 showed positive results for H. pylori colonies in males and 75 in females on agar plates., which were confirmed by Gram staining and biochemical assays. Genomic DNA of Helicobacter pylori was taken based on the cetyl trimethyl ammonium bromide protocol (CTAB). Nested PCR was performed using specific primers (HP-F and HP-R), (ccagA-F and cagA-R), (vacAs1 and vacAs2), (vacAm1 and vacAm2), and (VacAF and VacAR) sets for the ureC gene, as well as the virulence genes of cagA and vacA. Gel electrophoresis analysis was performed to visualize the PCR products. PCR results showed the presence of cagA, vacA, and ureC genes in H. pylori isolates. These results indicate the prevalence of H. pylori infection and the presence of virulence genes associated with peptic ulcer disease in the study population.
Abu-Taleb, A. M. F.; Abdelattef, R. S.; Abdel-Hady, A. A.; Omran, F. H.; El-Korashi, L. A.; Abdel-Aziz El-Hady, H.; El-Gebaly, A. M. (2018). Prevalence of Helicobacter pylori cagA and iceA genes and their association with gastrointestinal diseases. Int. J. Microbiol. 4809093. https://doi.org/10.1155/2018/4809093
Aghdaei, H. A.; Farzi, N.; Yadegar, A.; Yamaoka, Y.; Zali, M. R. (2018). Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect. Genet. Evol., 60, 26–34. https://doi.org/10.1016/j.meegid.2018.02.017
Ahmed, Monjur. (2019). Peptic Ulcer Disease. https://doi.org/10.5772/intechopen.86652.
Atherton, J. C., Cao, P., Peek, R. M., Tummuru, M. K., Blaser, M. J., & Cover, T. L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori: association of specific vaca types with cytotoxin production and peptic ulceration (∗). Journal of Biological Chemistry, 270 (30), 17771-17777. https://doi.org/10.1074/jbc.270.30.17771
Baghaei, K.; Dabiri, H.; Jafari, F.; Shokrzadeh, L.; Abdi, S., Pourhoseingholi, M. A.; Mohammadzadeh, A. (2017). Prevalence of Helicobacter pylori vacA, cagA, cagE, oipA, iceA, babA2 and babB genotypes in Iranian dyspeptic patients. Microb. Pathog. 105, 226–230. https://doi.org/10.1016/j.micpath.2017.02.018
Blanchard T, Nedrud J. (2012). Laboratory maintenance of Helicobacter species. Current Protocols in Microbiology; supplement 24.
Blanchard T. Czinn S J, (2011).Vaccinating against Helicobacter pylori infection. Nat Rev Gastroenterol Hepatol.;8:133–140. https://doi.org/10.1038/nrgastro.2011.1
Bravo, L. E.; Sicinschi, L. A.; Correa, P.; Peek, R. M., Jr.; Wilson, K. T.; Loh, J. T.; Yepez, M. C.; Gold, B. D.; Thompson, D. T.; Cover, T. L.; et al., (2012). Non-invasive genotyping of Helicobacter pylori cagA, vacA, and hopQ from asymptomatic children. Helicobacter 17, 96–106. https://doi.org/10.1111/j.1523-5378.2011.00919.x
Brigitte L., Mabeku K., Larissa M., Ngamga N., and Leundji H., (2018), “Potential risk factors and prevalence of Helicobacter pylori infection among adult patients with dyspepsia symptoms in Cameroon,” Infect. Dis. (Auckl)., vol., no. 278, pp. 1–11.
Burlando, M, Herzum, A, Cozzani, E., Parodi, A. (2021). The 30th birthday of chronic ulcerative stomatitis: A systematic review. Int. J. Immunopathol. Pharmacol., 35, 20587384211052437. https://doi.org/10.1177/20587384211052437
Censini, S.; Xiang, Z.; Bayeli, P. F.; Telford, J. L.; Figura, N.; Rappuoli, R.; Covacci, A. (1995). Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect. Immun. 63, 94–98. https://doi.org/10.1128/iai.63.1.94-98.1995
Chan. F K L and Lanas A (2017). Peptic ulcer disease. Lancet; 390: 613–624. https://doi.org/10.1016/S0140-6736(16)32404-7
Cozzani, E, Parodi, A., Chorzelski, T. P, Beutner, E. H, Rebora, A. (1998), A molecule of about 70 kd is the immunologic marker of chronic ulcerative stomatitis. J. Am. Acad. Dermatol. 38 Pt 1, 1005–1006.
Fraser, A., Owen, R. J., Bickely, J., Hurtado, A., and Pounder, R. E. (1994) Comparison of PCR-based restriction length polymorphism analysis of urease genes with rRNA gene profiling for monitoring Helicobacter pylori infections in patients on triple therapy. J Clin Microbiol 32, 1203–1210. https://doi.org/10.1128/jcm.32.5.1203-1210.1994
Gaiani, F., Kayali, S., Manfredi, M., Bianchi, L., Bizzarri, B., Leandro, G., Di Mario, F., & De' Angelis, G. L. (2018). Helicobacter pylori, transmission routes and recurrence of infection: state of the art. Acta bio-medica : Atenei Parmensis, 89(8-S), 72–76. https://doi.org/10.23750/abm.v89i8-S.7947.
Gong, W. Zhou, D. Zhang, Y. Mohamed, S. O. Ogbomo, H. Wang, X. Liu, Y. Quan, Z. (2011). Are Helicobacter pylori and other Helicobacter species infection associated with human biliary lithiasis? A meta-analysis. PLoS ONE, 6, e27390. https://doi.org/10.1371/journal.pone.0027390
Guaman, Jhoan et al., (2018). Detection of Helicobacter pylori from Human Biological Samples (Feces) by Antigenic Screening and Culture. Jundishapur Journal of Microbiology. 11. E 6672. https://doi.org/10.5812/jjm.66721.
Harrison U, Fowora M A, Seriki A T, Loell E, Mueller S, et al., (2017) Helicobacter pylori strains from a Nigerian cohort show divergent antibiotic resistance rates and a uniform pathogenicity profile. PLOS ONE 12(5): e0176454. https://doi.org/10.1371/journal.pone.0176454
Hooi J K, Lai W Y, Ng W K, Suen M M, Underwood F E, Tanyingoh D, et al., Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017; 153:420–9. https://doi.org/10.1053/j.gastro.2017.04.022
Ikenoue, T.; Maeda, S.; Ogura, K.; Akanuma, M.; Mitsuno, Y.; Imai, Y.; Yoshida, H.; Shiratori, Y.; Omata, M. (2001). Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin. Diagn. Lab. Immunol., 8, 181–186 https://doi.org/10.1128/CDLI.8.1.181-186.2001
Ilver, D.; Arnqvist, A.; Ogren, J.; Frick, I. M.; Kersulyte, D.; Incecik, E. T.; Berg, D. E.; Covacci, A.; Engstrand, L.; Boren, T. (1998). Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377. https://doi.org/10.1126/science.279.5349.373
Jaiswal, Falguni et al., (2021). Peptic ulcer: a review on etiology, pathogenesis and treatment. Asian Journal of Pharmaceutical Education and Research. 10. 1. https://doi.org/10.38164/AJPER/10.4.2021.1-17.
Kim C G, Choi I J, Lee J Y, Kim Y-I, Kook M-C, Park B, Joo J. (2020) Family history of gastric cancer and Helicobacter pylori treatment. N Engl J Med;382:427–436. https://doi.org/10.1056/NEJMoa1909666.
King J A, Azhari H, Coward S, et al., (2022). The global incidence of peptic ulcer disease is decreasing since the turn of the 21st century: a study of the Organisation for Economic Co-Operation and Development (OECD). Am J Gastroenterol; 117: 1419–1427. https://doi.org/10.14309/ajg.0000000000001843
Kuipers, E. J., Thijs, J. C., & Festen, H. P. (1995). The prevalence of Helicobacter pylori in peptic ulcer disease. Alimentary pharmacology & therapeutics, 9 Suppl 2, 59–69.
Lange, C.; Censini, S.; Xiang, Z.; Crabtree, J. E.; Ghiara, P.; Borodovsky, M.; Rappuoli, R.; Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA93, 14648–14653. https://doi.org/10.1073/pnas.93.25.14648
Marshall, B. Robin Warren, J. (1983). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 321, 1273–1275.
Mitsuno, Y.; Ikenoue, T.; Maeda, S.; Ogura, K.; Akanuma, M.; Imai, Y.; Yoshida, H.; Shiratori, Y.; Omata, M. (2001). Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin. Diagn. Lab. Immunol., 8, 181–186. https://doi.org/10.1128/CDLI.8.1.181-186.2001
Montassier, K, Touchefeu, Y. Nieman, E. Gastinne, T. Potel, G. Bruley des Varannes S., de La, M. F. (2014), Cochetiere Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications Aliment Pharm. Ther., 40 (5) pp. 409-421. https://doi.org/10.1111/apt.12878
Namwat, W.; Chomvarin, C.; Chaicumpar, K.; Mairiang, P.; Sangchan, A.; Sripa, B.; Tor-Udom, S.; Vilaichone, R. K. (2008). Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA and babA2 genotypes in Thai dyspeptic patients. Int. J. Infect. Dis. 12, 30–36. https://doi.org/10.1016/j.ijid.2007.03.012
Naranjo D, Suárez M, Bayona M, Gallego M, Urbina M, Rojas D. (2012) Aspectos históricos, epidemiológicos y patológicos de las helicobacteriosis en humanos y en caninos. Medicina (Bogotá); 34: 146-161.
Ogiwara H, Sugimoto M, Ohno T, Vilaichone R-K, Mahachai V, Graham D Y, Yamaoka Y (2009). Role of deletion located between the intermediate and middle regions of the Helicobacter pylorivacA gene in cases of gastroduodenal diseases. J Clin Microbiol 47: 3493–3500. https://doi.org/10.1128/JCM.00887-09
OmarEl-, Amieva, M. R. & E. M. (2008) Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134, 306–323. https://doi.org/10.1053/j.gastro.2007.11.009
Orhan D, Macin S, Alp A, Sener B, Sokmensuer C, Ozen H, et al., (2018). Comparison of culture, Real- time-PCR, ELISA, and histopathological examination methods for identification of Helicobacter pylori. Istanbul Medical Journal.; 19:138–42.
Peek R M, Atherton J C, Cao P, Tummuru M K, Blaser M J, Cover T L (1995) Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 270: 17771–17777. https://doi.org/10.1074/jbc.270.30.17771
Radin J N Gaddy J A,, Cullen T W, Chazin W J, Skaar E P, Trent M S, Algood H M S. (2015) Helicobacter pylori resists the antimicrobial activity of calprotectin via lipid a modification and associated biofilm formation. mBio.;6(6):e01349-15. https://doi.org/10.1128/mBio.01349-15
Sahebkar A H, Khademi F, Vaez H, Arzanlou M, Peeridogaheh H. (2017). Characterization of clarithromycin resistant Helicobacter pylori strains in Iran: A systematic review and meta-analysis. J Glob Antimicrob Resist; 10:171–8 https://doi.org/10.1016/j.jgar.2017.05.021
Sambrook, Joseph. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press.
Santiago P, Moreno Y, Ferrús M A. (2015). Identification of viable Helicobacter pylori in drinking water supplies by cultural and molecular techniques. Helicobacter;20:252-9. https://doi.org/10.1111/hel.12205
Sasatsu, M., Rimbara, E., & Graham, D. Y. (2013). PCR detection of Helicobacter pylori in clinical samples. Methods in molecular biology (Clifton, N.J.), 943, 279–287. https://doi.org/10.1007/978-1-60327-353-4_19.
Shi Y, Ren X, Suo B, Yao X, Lu H, Li C, et al., (2023). Individualized diagnosis and eradication therapy for Helicobacter pylori infection based on gene detection of clarithromycin resistance in stool specimens: A systematic review and meta-analysis. Helicobacter. 28:e12958. https://doi.org/10.1111/hel.12958
Sokmensuer C, Alp A, Macin S, Sener B, Orhan D, Ozen H, et al., (2018).Comparison of culture, Real- time-PCR, ELISA, and histopathological examination methods for identification of Helicobacter pylori. Istanbul Medical Journal.; 19:138–42. https://doi.org/10.5152/imj.2018.94834
Sonis, S. T. (2012). The pathobiology of oral mucositis, Oral mucositis, Springer Healthcare Ltd, Tarporley,, pp. 7-13.
Stark, P. C, Solomon, L. W, Winter, L, Kumar, V, Sinha, S. (2010). ELISA test for p63 antibodies in chronic ulcerative stomatitis. Oral Dis., 16, 151–155. https://doi.org/10.1111/j.1601-0825.2009.01606.x
Till, M.; Odenbreit, S.; Haas, R. (1996). Optimized BlaM-transposon shuttle mutagenesis of Helicobacter pylori allows the identification of novel genetic loci involved in bacterial virulence. Mol. Microbiol. 20, 361–373. https://doi.org/10.1111/j.1365-2958.1996.tb02623.x
Vaez H, Khademi F, Sahebkar A H, Arzanlou M, Peeridogaheh H. (2017). Characterization of clarithromycin resistant Helicobacter pylori strains in Iran: A systematic review and meta-analysis. J Glob Antimicrob Resist.; 10:171–8. https://doi.org/10.1016/j.jgar.2017.05.021
van Amsterdam, K., van Vliet, A. H., Kusters, J. G. & van der. (2006). Ende, A. Of microbe and man: determinants of Helicobacter pylori-related diseases. FEMS Microbiol. Rev. 30, 131–156. https://doi.org/10.1111/j.1574-6976.2005.00006.x
Wilson, K. (1987) Preparation of genomic DNA from bacteria, in Current Protocols in Molecular Biology (Ausubel, F M, Brent, R, Kingston, R E, Moore, D D, Smith, J. A, Seidman, J. G., and Struhl, K., eds.), Wiley, New York, pp 2.4.1,2.4 2.
Wilson, K. T., Wroblewski, L. E., Peek, R. M. (2010). Helicobacter pylori and Gastric Cancer: Factors That Modulate Disease Risk. Clin. Microbiol. Rev. 23, 713–739. https://doi.org/10.1128/CMR.00011-10
Wong C H, Khin L W, Heng K S, Tan K C, Low C O. (2004). The LRINEC (Laboratory risk indicator for necrotizing fasciitis) score: a tool for distinguishing necrotizing fasciitis from other soft tissue infections. Crit Care Med; 32:1535–41. https://doi.org/10.1097/01.ccm.0000129486.35458.7d
Yao X, Ren X, Shi Y, Suo B, Lu H, Li C, et al., (2023). Individualized diagnosis and eradication therapy for Helicobacter pylori infection based on gene detection of clarithromycin resistance in stool specimens: A systematic review and meta-analysis. Helicobacter; 28:e12958. https://doi.org/10.1111/hel.12958
Yeh, Y. C.; Chang, W. L.; Sheu, B. S. (2018). The impacts of H. pylori virulence factors on the development of gastroduodenal diseases J. Biomed. Sci., 25, 68. https://doi.org/10.1186/s12929-018-0466-9
Zuo W, Yang H, Li N, Ouyang Y, Xu X, Hong J (2022) Helicobacter pylori infection activates Wnt/β-catenin pathway to promote the occurrence of gastritis by upregulating ASCL1 and AQP5. Cell Death Discovery 8:1–10. https://doi.org/10. 1038/s41420-022-01026-0