|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Pluchea ovalis is an important (significant) medicinal plant that belongs to the Asteraceae family. The present study Silver Nanoparticles (AgNPs) are synthesized, characterized from P. ovalis leaf extract. Also investigated the antimicrobial and antioxidant capabilities of capabilities of Silver Nanoparticles. UV–vis spectroscopy, FTIR, SEM, (XRD), and Zeta potential studies were used to describe the P. ovalis (POL-AgNPs) green synthesis. Colour change from yellow to dark brown and UV–vis absorption spectra's 435 nm absorption band suggested AgNPs generation. SEM analysis showed round and rough-edged crystallite nanostructures with an average particle size of 82 to 114 nm in P. ovalis extract-mediated AgNPs. FTIR showed that AgNPs generation and stability are affected by distinct functional groups -NH(Amide), -CH2(Methylene), and C=O (carbonyl). While XRD spectrum exhibited four Bragg diffraction peaks at 3 9.2218 3981, 6 5.3217, and 7 8 2715 degrees, matching the Fae-centered cubic (fee) structure's facets. Most Zeta Potential readings over +25 mV and below -25 mV are stable. The antioxidant (DPPH) property of green produced of P. ovalis silver nanoparticles (POL-AgNPs)was tested standards (Vitamin C and butylated hydroxytoluene-BHT) at concentrations ranging from 5 to 80 µg/ml. BHT has 65% scavenging activity and vitamin C 98%. This robust finding supports ascorbic acid's antioxidant potential, a dietary antioxidant. POL-AgNPs Methanol is 94% activity. Total Antioxidant Capacity (TAC) of POL-AgNPs, showed 92% total antioxidant activity at doses from 25 to 400 µg/ml, the Ascorbic acid, the main dietary antioxidant, it was 85% active. POL-AgNPs Methanol has 80% total antioxidant activity, compared to 64% and 70% for petroleum ether and chloroform. Antibacterial activity was provided by ampicillin, and different concentrations of POL-AgNPs, (25, 50, 75, and 100 µl) various bacterial strains by agar well diffusion method. Inhibition zone for S. aureus by ampicillin was16 mm at 25 µL 20 mm in 50 µL in, 22 mm in 75 µL in, and 25 mm in 100 µL. The ampicillin zone of inhibition against E. coli was 11, 13, 14, and 16 mm. POL-AgNPs' increasing zones of inhibition against S. aureus were 0.2, 0.6, 5.4, and 11 mm; 0.2, 0.6, 0.8, and 12 mm in (inhibited) S. pneumonia; 0.4, 0.5, 4 mm, and 8 mm in (inhibited) P. aeruginosa. For E. coli, zones are 0.4, 0.5, 6, and 11 mm. S. aureus, E. coli, S. pneumoniae, and P. aeruginosa were inhibited by POL-AgNPs active at a minimum concentration of 200 µg/mL The well diffusion method was used to evaluate POL-AgNPs and Fluconazole's antifungal activity against Candida albicans and Aspergillus niger. C. albicans found that the zones of inhibition, which varied in size from 13 to 22 mm, expanded with time. A. niger was inhibited at 12, 16, 21, and 25 mm. Against A. niger, POL-AgNPs inhibited at 11, 20, 24, and 27 mm. C. albicans had 8,12,16,19 mm inhibitory zones. This research presents a comprehensive examination of the synthesis, characterization of Silver Nanoparticles (AgNPs) from Pluchea ovalis and evaluation of its antimicrobial and antioxidant properties.
Agbonon, A. Aklikokou, K, Kwashie, E.-G and M. Gbéassor, (2004). Effet anti-cholinergique de la racine de Pluchea ovalis (pers.) Dc. (Asteraceae) sur la trachéeartère de rat in vitro, Annales PharmaceutiquesFrançaises, Volume 62, Issue 5,, Pages 354-358, ISSN 0003-4509, https://doi.org/10.1016/S0003-4509(04)94326-X.
Ahmed, W., Azmat, R., Mehmood, A., Qayyum, A., Ahmed, R., Khan, S. U., Liaquat, M., Naz, S. and Ahmad, S. (2021). The analysis of new higher operative bioactive compounds and chemical functional group from herbal plants through UF-HPLC-DAD and Fourier transform infrared spectroscopy methods and their biological activity with antioxidant potential process as future green chemical assay. Arabian Journal of Chemistry, 14(2), p.102935. https://doi.org/10.1016/j.arabjc.2020.102935
Akintayo, G. O.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Oladipo, I. C.; Badmus, J. A.; Ojo, S. A.; Elegbede, J. A.; Gueguim-Kana, E. B.; Beukes, L. S.; et al., (2020). Synthesis, bioactivities, and cytogenotoxicity of animal fur-mediated silver nanoparticles. IOP Conf. Ser. Mater. Sci. Eng., 805, 1–24. https://doi.org/10.1088/1757-899X/805/1/012041
Akshay C. Dhayagude, Abhishek Das, Satyawati S. Joshi, Sudhir Kapoor. (2018). γ-Radiation induced synthesis of silver nanoparticles in aqueous poly (N-vinylpyrrolidone) solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 556,Pages 148-156,ISSN 0927-7757, https://doi.org/10.1016/j.colsurfa.2018.08.028.S.
Alghamdi, S. B. (2020). Identification of volatile constituents of Albaha Pluchea ovalis. Int. Mod. Pharm. Res., 4, 60–69.
Alharbi, N. S., Alsubhi, N. S., Felimban, A. I., & Alsubhi, N. S. (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109-124. https://doi.org/10.1016/j.jrras.2022.06.012
Al-Otibi, F. et al., (2021). Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biol. Sci. 28, 2229–2235. https://doi.org/10.1016/j.sjbs.2021.01.012
Alsubki, R.; Tabassum, H.; Abudawood, M.; Rabaan, A. A.; Alsobaie, S. F.; Ansar, S. (2021). Green synthesis, characterization, enhanced functionality, and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi J. Biol. Sci., 28, 2102–2108. https://doi.org/10.1016/j.sjbs.2020.12.055
Amargeetha, A. et al., (2018). X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from Erythrina indica flowers. Nanosci. Technol. 5, 1–5. https://doi.org/10.15226/2374-8141/5/1/00152
Anandalakshmi K., J. Venugobal V. Ramasamy. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 6:399–408 https://doi.org/10.1007/s13204-015-0449-z.
Ananth, A. N., Daniel, S. C., Sironmani, T. A., & Umapathi, S. (2011). PVA and BSA stabilized silver nanoparticles-based surface-enhanced plasmon resonance probes for protein detection. Colloids and surfaces. B, Biointerfaces, 85(2), 138–144. https://doi.org/10.1016/j.colsurfb.2011.02.012
Astry M, Patil V, Sainkar S R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B.;102(8):1404–10. https://doi.org/10.1021/jp9719873.
Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey R P, Chang C M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022 Feb 16;27(4):1326. https://doi.org/10.3390/molecules27041326. PMID: 35209118; PMCID: PMC8878429.
Bapat, M. S., Singh, H., Shukla, S. K., Singh, P. P., Vo, D. N., Yadav, A., Goyal, A., Sharma, A., & Kumar, D. (2022). Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere, 286(Pt 2), 131761.
Beata Kowalska-Krochmal, Ruth Dudek-Wicher. (2021). The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens, 10, 165. https://doi.org/10.3390/pathogens10020165
Benjamin Le Ouay, Francesco Stellacci. (2015). Antibacterial activity of silver nanoparticles: A surface science insight,Nano Today,Volume 10, Issue 3,,Pages 339-354,ISSN 1748-0132, https://doi.org/10.1016/j.nantod.2015.04.002.
Bhandari R, Pant D, Kathayat K S, Bhattarai R, Barakoti H, Pandey J, Jamarkatel-Pandit N. (2023). Preliminary Study on the Antibacterial Activities and Antibacterial Guided Fractionation of Some Common Medicinal Plants Practices in ItumBahal, Kathmandu Valley of Nepal. Scientific World Journal. Sep 21; 2023:7398866. https://doi.org/10.1155/2023/7398866. PMID: 37780640; PMCID: PMC10539093.
Boutinguiza, M., M. Fernández-Arias, J. del Val, J. Buxadera-Palomero, D. Rodríguez, F. Lusquiños, F. J. Gil, J. Pou. (2018). Synthesis and deposition of silver nanoparticles on cp Ti by laser ablation in open air for antibacterial effect in dental implants. Materials Letters 231 126–129. https://doi.org/10.1016/j.matlet.2018.07.134
Boutinguiza, M., R. Comesaña, F. Lusquiños, A. Riveiro, J. del Val, J. Pou (2015). Production of silver nanoparticles by laser ablation in open air, Applied Surface Science, Volume 336,,Pages 108-111,ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2014.09.193.
Chatterjee, S., Lou, X.-Y., Liang, F., & Yang, Y. (2022). Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coordination Chemistry Reviews, 459, 214461. https://doi.org/10.1016/j.ccr.2022.214461
Chelliah, R., Banan-MwineDaliri, E., Oh, D H. (2022). Screening for Antioxidant Activity: Total Antioxidant Assay. In: Dharumadurai, D. (eds) Methods in Actinobacteriology. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1728-1_64.
Chokshi, K.; Pancha, I.; Ghosh, T.; Paliwal, C.; Maurya, R.; Ghosh, A.; Mishra, S. (2016). Green synthesis, characterization, and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae: Acutodesmus dimorphus. RSC Adv., 6, 72269–72274. https://doi.org/10.1039/C6RA15322D
Chopade V, Kamble D. (2021). Application of green silver nanoparticles synthesized using leaf extract of tridax procumbens for preparation of clinical antimicrobial bandages. Int J Pharmaceutical Investigation 11(1):10–13. https://doi.org/10.5530/ijpi.2021.1.3.
Desai R, Mankad V, Gupta S K, Jha P K. (2012). Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. NanosciNanotechnol Lett. 4:30–34. https://doi.org/10.1166/nnl.2012.1278
Eid M M. (2022). Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698 6_89.
Ghorbani H R, Safekordi A A, Attar H, Sorkhabad S M. (2011). Biological and non-biological methods for silver nanoparticles synthesis. J Chem Eng Sci Res Branch 25(3):317–326.
Gonfa, Y. H.; Tessema, F. B.;Bachheti, A.; Tadesse, M. G.; Eid, E. M.; Abou Fayssal, S.; Adelodun, B.; Choi, K. S.; Širi´c, I.; Kumar, P.; et al., (2022). Essential Oil Composition of Aerial Part of Pluchea ovalis (Pers.) DC., Silver Nanoparticles Synthesis, and Larvicidal Activities against Fall Armyworm. Sustainability, 14, 15785. https://doi.org/10.3390/su142315785.
Gong, J., & Krishnan, S. (2019). Mathematical modeling of dye-sensitized solar cells. In Dye-Sensitized Solar Cells: Mathematical Modelling, and Materials Design and Optimization (pp. 51-81). Elsevier. https://doi.org/10.1016/B978-0-12-814541-8.00002-1
Govindappa M, Hemashekhar B, Arthikala M K, Rai VR, Ramachandra Y L. (2018). Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys, 9:400–408. https://doi.org/10.1016/j.rinp.2018.02.049
Goyal, S. K. (2011). Biological studies of the plants from genus Pluchea. Ann. Biol. Res. 2011, 2, 25–34. https://doi.org/10.1016/j.chemosphere.2021.131761
Hussain, H.; Al-Harrasi, A.; Abbas, G.; Ur Rehman, N.; Mabood, F.; Ahmed, I.; Saleem, M.; van Ree, T.; Green, I.R.; Anwarg, S.; et al., (2013). The genus Pluchea: Phytochemistry, traditional uses, and biological activities. Chem. Biodivers., 10, 1944–1971. https://doi.org/10.1002/cbdv.201200140
Jin, F., Li, H., & Xu, D. (2019). Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification. Analytica chimica acta, 1077, 297–304. https://doi.org/10.1016/j.aca.2019.05.066
Jouyban, A., & Rahimpour, E. (2020). Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta, 217, 121071. https://doi.org/10.1016/j.talanta.2020.121071
Jung, J., Oh, H., Noh, H., Ji, J. and Kim, S. (2006) Metal Nanoparticle Generation Using a Small Ceramic Heater with a Local Heating Area. Journal of Aerosol Science, 37, 1662-1670. http://dx.doi.org/10.1016/j.jaerosci.2006.09.002
Kamble, S. et al., (2022). Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect 7, e202103084. https://doi.org/10.1002/slct.202103084
Karthik, R.; Chen, S. M.; Elangovan, A.; Muthukrishnan, P.; Shanmugam, R.; Lou, B. S. (2016). Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity, and DFT studies. J. Colloid Interface Sci., 468, 163–175. https://doi.org/10.1016/j.jcis.2016.01.046
Kaur, Mandeep & Gautam, Ayushi & Guleria, Praveen & Singh, Kulvinder & Kumar, Vineet. (2022). Green synthesis of metal nanoparticles and their environmental applications. Current Opinion in Environmental Science & Health. 29. 100390. https://doi.org/10.1016/j.coesh.2022.100390.
Khan, S. A., Jain, M., Pandey, A., Pant, K. K., Ziora, Z. M., Blaskovich, M. A. T., Shetti, N. P., & Aminabhavi, T. M. (2022). Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. Journal of environmental management, 319, 115675. https://doi.org/10.1016/j.jenvman.2022.115675
Khan, S.; Singh, S.; Gaikwad, S.; Nawani, N.; Junnarkar, M.; Pawar, S. V. (2020). Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ. Sci. Pollut. Res., 27, 27221–27233. https://doi.org/10.1007/s11356-019-05239-2
Khodadadi, S.; Mahdinezhad, N.; Fazeli-Nasab, B.; Heidari, M. J.; Fakheri, B.; Miri, A. (2021). Investigating the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos extract and evaluating its antibacterial properties. Biomed. Res. Int., 5572252. https://doi.org/10.1155/2021/5572252
Kibiti C M, Afolayan A J. (2015). Preliminary Phytochemical Screening and Biological Activities of Bulbine abyssinica Used in the Folk Medicine in the Eastern Cape Province, South Africa. Evid Based Complement Alternat Med, 2015:617607. https://doi.org/10.1155/2015/617607
Magalhães, L. A. M.; Lima, M. P.; Marques, M. O. M.; Facanali, R.; Pinto, A. C. S.; Tadei, W. P. (2010). Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules, 15, 5734–5741. https://doi.org/10.3390/molecules15085734
Mahajan, P. G.; Dige, N. C.; Vanjare, B. D.; Phull, A. R.; Kim, S. J.; Lee, K. H. (2019). Gallotannin mediated silver colloidal nanoparticles as multifunctional nano platform: Rapid colorimetric and turn-on fluorescent sensor for Hg2+, catalytic and in vitro anticancer activities. J. Lumin., 206, 624–633. https://doi.org/10.1016/j.jlumin.2018.10.095
Mandeel Q; A Taha. (2005). Pharmaceutical Biology, 43(4), 340.
Maria Starowicz, Barbara Stypu?a, Jacek Bana? (2006). Electrochemical synthesis of silver nanoparticles, Electrochemistry Communications, Volume 8, Issue 2,Pages 227-230,ISSN 1388-2481, https://doi.org/10.1016/j.elecom.2005.11.018.
Menazea A. A. (2020). Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency, Radiation Physics and Chemistry, Volume 168,108616, ISSN 0969-806X, https://doi.org/10.1016/j.radphyschem.2019.108616
Meri Amerikova, Ivanka Pencheva El-Tibi, Vania Maslarska, Stanislav Bozhanov & Konstantin Tachkov. (2019). Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents, Biotechnology & Biotechnological Equipment, 33:1, 671-682, https://doi.org/10.1080/13102818.2019.1611385.
Mikac, L.; Ivanda, M.; Goti´c, M.; Mihelj, T.; Horvat, L. (2014). Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J. Nanoparticle Res., 16, 1–13.
Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
Nair A S, Vinila V S, Issac S, Jacob R, Mony A, Nair H G, Rajan S. (2014). Studies on nano crystalline ceramic superconductor LaZrYBaCa2Cu3O11 at three different temperatures. Chem Mater Sci 4(2):126–133 https://doi.org/10.4236/jcpt.2014.42016
Olugbami, J., Gbadegesin, M., & Odunola, O. (2015). In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharmacognosy Research, 7(1), 49.
Pakkirisamy, M Suresh Kumar Kalakandan and Karthikeyen Ravichandran. (2017). Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesiaRoxb (Black Turmeric). Phcogj.Com, 9(6):952-956. https://doi.org/10.5530/pj.2017.6.149
Pal S, Tak Y K, Song J M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. https://doi.org/10.1128/AEM.02218-06.
Panda, S., S. E. Pratsinis. (1995). Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor, Nanostructured Materials, Volume 5, Issues 7–8,Pages 755-767,ISSN 0965-9773, https://doi.org/10.1016/0965-9773(95)00292
Parteek Prasher, Mousmee Sharma, Harish Mudila, Gaurav Gupta, Abhishek Kumar Sharma, Deepak Kumar, Hamid A. Bakshi, Poonam Negi, Deepak N. Kapoor, Dinesh Kumar Chellappan, Murtaza M. Tambuwala, Kamal Dua. (2020). Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery, Colloid and Interface Science Communications, Volume 35,,100244,ISSN 2215-0382, https://doi.org/10.1016/j.colcom.2020.100244.A.
Pavani K V, Sunilkumar N, Grayathramma K. (2012). Plants as ecofriendly nanofactories. J Biosci 6(1):1–6.
Perera, W.; Kevers, C.; Michiels, J. A.; Spengler, S. I.; Dommes, J. (2013). Variation in phenolic constituents and antioxidant capacities of plant organs of three Cuban species of Pluchea Cass. (Asteraceae) under ex vitro and in vitro growth conditions. J. Med. Plant Res., 7, 2527–2536.
Pullaiah et al., (2007). - Flora of Eastern Ghats Vol. 3; N. P. Singh, 1988. Flora of Eastern Karnataka.
Raman N. (2006). Phytochemical Techniques. New India Publishing. Agency, New Delhi
Ramdath, S.; Mellem, J.; Mbatha, L. S. (2021). Anticancer and antimicrobial activity evaluation of Cowpea-Porous-Starch-Formulated silver nanoparticles. J. Nanotechnol., 5525690. https://doi.org/10.1155/2021/5525690
Sayed A. Ahemd and Emadeldin M. Kamel. (2013). Phenolic constituents and biological activity of the genus Pluchea. Der Pharma Chemica, 5(5):109-114.
Shweta Verma, B. Tirumala Rao, A. P. Srivastava, D. Srivastava, R. Kaul, B. Singh. (2017). A facile synthesis of broad plasmon wavelength tunable silver nanoparticles in citrate aqueous solutions by laser ablation and light irradiation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 527,Pages 23-33,ISSN 0927-7757, https://doi.org/10.1016/j.colsurfa.2017.05.003.
Simchi, A., R. Ahmadi, S. M. Seyed Reihani, A. Mahdavi (2007). Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process, Materials & Design, Volume 28, Issue 3,Pages 850-856, ISSN 0261-3069, https://doi.org/10.1016/j.matdes.2005.10.017.
Singh, D.; Rathod, V.; Ninganagouda, S.; Hiremath, J.; Singh, A. K.; Mathew, J. (2014). Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg. Chem. Appl., 408021.
Singh, Y., Javier, J R N., Ehrman, S H., Magnusson, M., & Deppert, K. (2002). Approaches to increasing yield in evaporation/condensation nanoparticle generation. Journal of Aerosol Science, 33(9), 1309-1325. https://doi.org/10.1016/S0021-8502(02)00072-1
Singha, D., Barman, N., & Sahu, K. (2014). A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. Journal of colloid and interface science, 413, 37–42. https://doi.org/10.1016/j.jcis.2013.09.009
Straková, P., Larmola, T., Andrés, J., Ilola, N., Launiainen, P., Edwards, K., Minkkinen, K., & Laiho, R. (2020). Quantification of Plant Root Species Composition in Peatlands Using FTIR Spectroscopy. Frontiers in Plant Science, 11, 597. https://doi.org/10.3389/fpls.2020.00597
Sumaiya Naeema Hawar, Zainab K. Taha, Atyaf Saied Hamied, Hanady S. Al-Shmgani, Ghassan M. Sulaiman, and Sobhy E. Elsilk.. (2023). Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomycessp. (JN227071.1) against Rhizoctonia solani. International Journal of Biomaterials PB - Hindawi. 1687-8787 https://doi.org/10.1155/2023/2411555.
Suwannakul, S.; Wacharanad, S.; Chaibenjawong, P. (2018). Rapid green synthesis of silver nanoparticles and evaluation of their properties for oral disease therapy. Songklanakarin J. Sci. Technol., 40, 831–839.
Takeshi Tsuji, Kenzo Iryo, Norihisa Watanabe, Masaharu Tsuji. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size, Applied Surface Science,Volume 202, Issues 1–2,Pages 80-85,ISSN 0169-4332, https://doi.org/10.1016/S0169-4332(02)00936-4A.
Thiruchelvi, R., Jayashree, P., & Mirunaalini, K. (2020). Synthesis of silver nanoparticle using marine red seaweed Gelidiella acerosa -A complete study on its biological activity and its characterisation. Materials Today: Proceedings.
Vanden Bout D A. (2002). Metal nanoparticles: synthesis, characterization, and applications. In: Feldheim DL, Foss CA Jr., editors. New York: Marcel Dekker, c.x + 338 pp. $150.00. ISBN: 0-8247-0604-8. J Am Chem Soc 124:7874–75. https://doi.org/10.1504/IJNT.2011.038201
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum S L. (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. Jan 13;11(5):2804-2837. https://doi.org/10.1039/d0ra09941d.
Vinayagam, R.; Varadavenkatesan, T. (2017). Selvaraj, R. Evaluation of the anticoagulant and catalytic activities of the Bridelia retusa fruit extract-functionalized silver nanoparticles. J. Clust. Sci., 28, 2919–2932.
Willian N (2023). Silver nanoparticles (agnps) as effective disinfectants with natural source: a new inspiration. Iop Conf SerEarth Environ Sci 1148(1):012002. https://doi.org/10.1088/1755-1315/1148/1/012002