|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
The present study aims to investigate two of the Uropathogenic Escherichia coli (UPEC) pathogenesis mechanisms, as adherence and invasion in primate kidney epithelial (Vero) cells. Methods: 20 E. coli isolates from outpatients with UTI in one public clinic were evaluated for adherence and invasive abilities in Vero cells. Results: All 18 positive isolates for fimH gene adhered to the Vero cells (100%). The two UPEC isolates that did not carry the fimH gene did not adhere. Two different UPEC adherence patterns were observed: aggregative adherence pattern (AA) and a pattern called “no typical adherence pattern” (NTA). Among 18 adherent UPEC isolates, 11 presented AA adherence pattern (61%) and 7 showed NTA pattern (39%). The high rate of adherence of the UPEC fimH positive isolates (≅90%) to Vero cells suggests the expression and participation of the FimH adhesin in UPEC adherence behavior. Invasive capacity of UPEC isolates ranged of about 6.5% to 15.33%. Results corroborate the fact that UPEC can persist in the urinary tract through its adhesion, as well as invade cells establishing the bacterial UTI process.
Abe C M, Salvador F A, Falsetti I N, Vieira M A M, Blanco J, Blanco J E, et al., (2008). Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrheagenic E. coli. FEMS Immunol Medical Microbiol. 52: 397-406. https://doi.org/10.1111/j.1574-695X.2008.00388.x.
Ammerman N C, Beier-Sexton M, Azad A F (2008). Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. https://doi.org/10.1002/9780471729259.mca04es11.
Andrade N L, Da Cruz Campos A C, Cabral A M, Damasco P H, Lo-Ten-Foe J, Rosa, A et al., (2021). Infective endocarditis caused by Enterobacteriaceae: phenotypic and molecular characterization of Escherichia coli and Klebsiella pneumoniae in Rio de Janeiro, Brazil. Braz J Microbiol. 52: 1887-1896. https://doi.org/10.1007/s42770-021-00528-w.
Basu S, Mukherjee S K, Hazra A, Mukherjee M (2013). Molecular characterization of uropathogenic Escherichia coli: nalidixic acid and ciprofloxacin resistance, virulent factors and phylogenetic background. J Clin Diagn Res. 7: 2727 https://doi.org/10.7860/JCDR/2013/6613.3744.
Chen S L, Hung C S, Pinker J S, Walker J N, Cusumano C K, Li Z, Bouckaert J, et al., (2009). Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci USA. 106: 22439-2244. https://doi.org/10.1073/pnas.0902179106.
Dias R C S, Moreira B M, Riley L W (2010). Use of fimH Single-Nucleotide polymorphisms for strain typing of clinical isolates of Escherichia coli for epidemiologic investigation. J Clin Microbiol. 48: 483-488. https://doi.org/10.1128/JCM.01858-09.
Firoozeh F, Saffari M, Neamati F, Zibaei M (2014). Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis. Int J Infect Dis. 29: 219-222. https://doi.org/10.1016/j.ijid.2014.03.1393.
Flores-Meireles A L, Walker J N, Caparon M, Hultgren S J (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 13: 269. https://doi.org/10.1038/nrmicro3432.
Hannan T J, Totsika M, Mansfield K J, Moore K H, Schembri M A, Hultgren S J (2012). Host-pathogen checkpoints and population bottlenecks in persistent and intracellular Uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev. 36: 616-648. https://doi.org/10.1111/j.1574-6976.2012.00339.x.
Kucheria R, Dasgupta P, Sacks S H, Khan M S, Sheerin N S, (2005). Urinary tract infections: new insights into a common problem. Postgraduate Medical Journal. 81:83-86. https://doi.org/10.1136/pgmj.2004.023036.
Martinez J J, Mulvey M A, Schilling J D, Pinkner J S, Hultgren S J (2000). Type 1 Pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19: 2803-2812. https://doi.org/10.1093/emboj/19.12.2803.
Moreira C G, Carneiro S M, Nataro J P, Trabulsi L R, Elias W P (2003). Role of type I fimbriae in the aggregative adhesion pattern of enteroaggregative Escherichia coli. FEMS Microbiology Letters. 226: 79-85. https://doi.org/10.1016/S0378-1097(03)00561-5.
Mulvey M A, Schilling J D, Hultgren S J (2001). Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun. 69: 4572-4579. https://doi.org/10.1128/IAI.69.7.4572-4579.2001.
Nascimento J A S, Santos F F, Valiatti T B, Santos-Neto J F, Santos A C M., Cayô R, et al., (2021). Frequency and diversity of hybrid Escherichia coli strains isolated from urinary tract infections. Microorganisms. 27: 693. https://doi.org/10.3390/microorganisms9040693.
Pereira A C M, Britto-Filho J C J, Luna M G, Rosa A C P (2008). Enteroaggregative Escherichia coli (EAEC) strains enter and survive within cultured intestinal epithelial cells. Microb Pathog. 45: 310-314. https://doi.org/10.1016/j.micpath.2008.07.001.
Rosa A C P, Mariano A T, Pereira A M S, Tibana A, Gomes T A T, Andrade J C R (1998). Enteropathogenicity markers in Escherichia coli isolated from infants with acute diarrhea and healthy controls in Rio de Janeiro, Brazil. J Med Microbiol. 47: 781-790. https://doi.org/10.1099/00222615-47-9-781.
Santos P A, Pereira A C M, Ferreira A F, Alves M A M, Rosa A C P, Almeida A C F (2015). Adhesion, invasion, intracellular survival and cytotoxic activity of strains of Aeromonas spp. in HEp-2, Caco-2 and T-84 cell lines. Antonie van Leeuwenhoek. 107: 1225-1236. https://doi.org/10.1007/s10482-015-0416-4.
Schüroff P A, Salvador F A, Abe C M, Wami H T, Carvalho E, Hernandes R T, et al., (2021) The aggregate-forming pili (afp) mediates the aggregative adherence of a hybrid-pathogenic Escherichia coli (UPEC/EAEC) isolated from a urinary tract infection. Virulence. 12: 3073-3093. https://doi.org/10.1080/21505594.2021.2007645.
Staerk K, Khandige S, Kolmos H J, Møller-Jensen J, Andersen T M (2016). Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. J Infect Dis. 213: 386-394. https://doi.org/10.1093/infdis/jiv422.
Stamm, W E (2006). Host-pathogen interactions in community-acquired urinary tract infections. Trans Am Clin Climatol Assoc. 117: 75-84.
Tabasi M, Karam M R, Habibi M, Mostafavi E, Bouzari S (2016). Genotypic Characterization of Virulence Factors in Escherichia coli Isolated from Patients with Acute Cystitis, Pyelonephritis and Asymptomatic Bacteriuria. J Clin Diagn Res. 10: DC01-DC07. https://doi.org/10.7860/JCDR/2016/21379.9009.
Tang P, Foubister V, Pucciarelli M G, Finlay B B (1993). Methods to study bacterial invasion. J Microbiol Methods. 18: 227-240. https://doi.org/10.1016/0167-7012(93)90038-j.
Terlizzi M E, Gribaudo G, Maffei M E, (2017). Uropathogenic Escherichia coli (UPEC) infections: virulence factors bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 8: 1566. https://doi.org/10.3389/fmicb.2017.01566.
Wiles T J, Kulesus R R, Mulvey M A (2008). Origins and virulence mechanisms of Uropathogenic Escherichia coli. Exp Mol Pathol. 85: 11-19. https://doi.org/10.1016/j.yexmp.2008.03.007.
Wright K J, Hultgren S J (2006). Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 1: 75-87. https://doi.org/10.2217/17460913.1.1.75.
Wurpel J D, Totsika M, Allsopp L P, Webb R I, Moriel D G, Schembri M A, (2016). Comparative proteomics of Uropathogenic Escherichia coli during growth in human urine identify uca-like (ucl) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells. J Proteomics. 131: 177-189. https://doi.org/10.1016/j.jprot.2015.11.001