Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2019 - IJCMAS--ICV 2019: 96.39 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020]For more details click here

Login as a Reviewer

Indexed in



National Academy of Agricultural Sciences (NAAS)
NAAS Score: *5.38 (2020)
[Effective from January 1, 2020]
For more details click here

ICV 2019: 96.39
Index Copernicus ICI Journals Master List 2019 - IJCMAS--ICV 2019: 96.39
For more details click here

See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com / submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2021.10(11): 294-305
DOI: https://doi.org/10.20546/ijcmas.2021.1011.033


Co-Carcinogenicity of Arsenic: Probable Mechanisms
Archismaan Ghosh, Sutapa Mukherjee and Madhumita Roy*
Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata 700026, India
*Corresponding author
Abstract:

Presence of carcinogens, like Polycyclic Aromatic Hydrocarbons (PAH), in the form of cigarette smoke, vehicular emission and industrial emissions in our immediate surroundings is a potent health hazard. Arsenic, a carcinogenic metalloid, omnipresent in the environment, can act as co-carcinogen, where it enhances the carcinogenicity of other carcinogens. In the present study, the co-carcinogenic effect of Arsenic has been investigated, upon the 7,12-dimethylbenz[a]-anthracene (DMBA), a PAH, induced skin cancer model, in Swiss albino mice. Histological analysis revealed earlier development of invasive carcinoma in the DMBA and arsenic treated group in comparison to the DMBA treated mice alone. To understand this phenomena, ROS generation, DNA damage, lipid peroxidation, protein carbonyl content, total antioxidant capacity and activity of pro-inflammatory cytokines (TNF-α, IL6, IL17a, IL22) and their downstream modulators (NF-κB) was assessed. The results suggested that arsenic in the presence of DMBA induced higher ROS generation, greater DNA damage, elevated lipid peroxidation, increased protein carbonyl content, upregulated activity of pro-inflammatory cytokines and their downstream regulators as well as down regulated the total antioxidant capacity in comparison to DMBA alone. These findings hint at the co-carcinogenic potential of arsenic, as it significantly enhances the carcinogenicity of DMBA and hastens carcinogenesis.


Keywords: Arsenic, co-carcinogenicity, DMBA, ROS, inflammation
Download this article as Download

How to cite this article:

Archismaan Ghosh, Sutapa Mukherjee and Madhumita Roy. 2021. Co-Carcinogenicity of Arsenic: Probable Mechanisms.Int.J.Curr.Microbiol.App.Sci. 10(11): 294-305. doi: https://doi.org/10.20546/ijcmas.2021.1011.033