

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 04 (2019) Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2019.804.216

Species Composition, Relative Abundance and Diversity of Ants Associated with Lac Insect in Assam

Rituraj Saikia¹*, Purnima Das¹, Lakshmi Kanta Hazarika², Athar Nishat Islam³, Surajit Kalita¹ and Priyanka Saikia¹

¹Department of Entomology, AAU, Jorhat, Assam, India ²Assam Women's University, Jorhat, Assam, India ³Department of Agricultural Meteorology, AAU, Jorhat, India

**Corresponding author:*

ABSTRACT

Keywords

Ant, Lac insect, Trophobiont, Diversity, Abundance

Article Info

Accepted: 15 March 2019 Available Online: 10 April 2019

Introduction

are

the

most

abundant,

Ants

The present investigation highlighted the facultative mutualistic association of six ant species, viz. Camponotus parius Emery, Meranoplus bicolor Guerin-Meneville, Paratrechina longicornis Latreille, Monomorium dichroum Forel, Technomyrmex albipes Smith and Oecophylla smaragdina Fabricius (Hymenoptera: Formicidae) belonging to three sub-families (Formicinae, Myrmicinae and Dolichoderinae) with lac insect (Kerria lacca Kerr) on host plants, Flemingia semialata. Out of these, Technomyrmex albipes was the most abundant and dominated species which constituted 76.66 percent (394.8 no. of individual/15cm lac encrustation) followed by Paratrechina longicornis which contributed 12 percent (61.8 no. of individuals/15cm) of the total ant community throughout the crop season of lac insect. Highest numbers of ant population (101.5 no. of ants/15cm) was recorded at 81 days after inoculation *i.e.* at initial post fertilization stage. Highest numbers of ant species (5) was also recorded at initial post fertilization stage *i.e.* 81 days and 95 days after inoculation. Shannon-Wiener diversity Index for ant was recorded Highest (0.87) at 81 days after inoculation and lowest was recorded at maturity stage of lac insect (0.41). However, the Pielou's evenness index showed the highest value of 1.21 at 67 days after inoculation and lowest was recorded at maturity stage of lac crop (0.14).

important role within the terrestrial widely ecosystems as they have numerous interactions with different plant species such distributed social ubiquitous insects from the as seed dispersers, leaf and seed predators, Arctic Circle to the Equator (Brian, 1978) but, they are most abundant in the tropical and and in some cases, as pollinators (Bingham, subtropical ecosystem. The known living ants 1903; Vazquez, 1998). The effects of ants on involve 16 subfamilies, 296 genera and 15000 the biotic communities include a variety of species, around 10000 of which are described possible interactions which may include

(Bolton, 1994). Most of the species play an

predation (Kajak et al., 1972; Karhu, 1998), herbivory (Albert et al., 2005; Rodriguez, 2008), intraguild interference (Moja-Larano and Wise, 2007; Sanders and Platner, 2007), mutualistic interactions (Stadler and Dixon. 2005) and ecosystem engineering (Dauber et al., 2008). Ant is one of the dominant taxon in the lac insect ecosystem, where, facultative mutualistic association is seen between the two groups. The tiny scale insect act as trophobiont as their product, honey dew is taken as food by the ant and in return they protect the sap suckers from their natural enemies. Therefore, ant attendance in the lac ecosystem is very crucial for quality and quantity lac production. The species of ant associated with lac insects in Assam is not documented till now and hence, present investigation was undertaken to find out the ant species associated with lac insects. Another attempt was also made to study their relative abundance as well as diversity with different developmental stages of the lac insect.

Materials and Methods

The study was conducted at lac park, AAU, Jorhat, which is maintained for genetic conservation of lac insects. The winter crop of kusumi strain of lac insect was inoculated on 3rd July, 2017 on host Flemingia semialata and observations were started 25 days after inoculation and it was continued at fortnightly interval till harvesting of the crop. Ten plants of F. semialata were selected randomly and on each plant, fifteen centre meter lac encrustation was measured to record the ant species and their population abundance. Samplings were done during the evening time by visual count method as ants were found to be congregated on lac encrustation. Different ant species found to be associated with lac encrustation were counted, unidentified specimens collected, preserved separately at 90% alcohol and sent to Department of Forest

Entomology, Kerala Forest Research Institute, Thrissur, Kerala for identification. Photographic documentations of the identified specimens were studied using Leica image analyzer. The diversity was calculated by using "Shannon Wiener diversity Index (1949) and evenness was calculated by Pielou's evenness index (1975).

Results and Discussion

Species composition and richness of ants

The current study revealed association of six ant species belonging to the subfamily Formicinae, Myrmicinae and Dolichoderinae with the lac insect ecosystem (Table 1). Formicinae was the dominant subfamily representing three species (Camponotus Paratrechina longicornis parius Emery, smaragdina Latreille and *Oecophylla* Fabricius) followed by Myrmicinae which comprised of two species (Meranoplus bicolor Guerin- Meneville, Monomorium dichroum Forel) and a single species of Dolichoderinae (Technomyrmex albipes Smith) (Fig. 1. A-F). Carroll and Janzewn (1973) and Holldobler and Wilson (1990) also reported these three subfamilies as commonest attendant ant of trophobionts. Similar observation was also made by Kurmi et al., (2015) from Madhya Pradesh where they recorded association of seven ant species with kusumi lac ecosystem. Sharma et al., (2010) also reported association of 17 ant species with lac insect. Highest number of ant species (5) was encountered during 81 and 95 days after inoculation, *i.e.* at initial post fertilization stage of lac insects (Table 2).

Population abundance of ant species

Out of the six species, *Technomyrmex albipes* was the most abundant and dominated species encountered throughout the life cycle of lac insects. Data collected through visual count

method revealed a mean total of 515 no. of individual/15cm lac encrustation throughout the sampling period and out of these, Technomyrmex albipes constituted 76.66 percent (394.8 no. of individual/15cm lac encrustation) followed by Paratrechina longicornis 12 percent (61.8 no. of individual/15cm lac encrustation) of the total population. Ant population was initially low which gradually increased, reached highest (101.5 no. of individuals) at 81 days after inoculation followed by a subsequent declining trend. Two species, viz.. Technomyrmex albipes and Paratrechina longicornis were encountered throughout the crop periods of lac insect. Regarding the life stages of lac insect, it was evident from the Table 2 that ant population was much higher during the initial post fertilization stage as compared to the other stages.

Diversity and evenness of ants

Diversity index was calculated by Shannon-Wiener diversity Index and it revealed highest diversity of ant at 81 days after inoculation (0.87) and the lowest was recorded at maturity stage of lac insect (0.41) (Table 3). Diversity was more or less similar from 39 days to 109 days. However, the Pielou's

evenness index showed the highest evenness of ant at 67 days after inoculation (1.21) and lowest was recorded at maturity stage of lac crop (0.14).

Several factors such as species of tending ants (Addicott, 1979; Bristow, 1984; Gibernau and Dejean, 2001; Itioka & Inoue, 1996), the aggregation size of the honeydew-producing insects (Breton and Addicott, 1992; Cushman and Whitham. 1989). temperature (Bannerman and Roitberg, 2014), the developmental stage of the honeydewproducing insects (Cushman and Whitham, 1989; Eastwood, 2004) as well as competition among honeydew-producing insect aggregations for the services of ant mutualists (Cushman and Whitham, 1989; Cushman, 1991) determine the mutualistic association between ants and lac insects. During the initial stage, both the sexes of lac insects produce a little honeydew, but after mating all males die and only females produce honeydew, but in large quantities. This honeydew can be found on the body of lac insects or on the surface of leaves and branches, and even on the ground (Chen et al., 2017) which are being consumed as a source of energy by the attendant ants.

Serial	Ant Species	Common Name	Sub-Family	Mean	Relative
No.				populati	abundan
				on	ce
Α	Camponotus parius Emery	Carpenter Ant	Formicinae	12.1	2.35
В	Meranoplus bicolor Guerin- Meneville	Silky Shield Ant	Myrmicinae	43.3	8.31
С	Paratrechina longicornis Latreille	Crazy Ant	Formicinae	61.8	12
D	Monomorium dichroum Forel	Yellow Legged Ant	Myrmicinae	1.6	0.31
E	Technomyrmex albipes Smith	White Footed Ant	Dolichoderinae	394.8	76.66
F	Oecophylla smaragdina Fabricius	Weaver Ant/ Orange Gaster	Formicinae	1.4	0.27
			Total	515	

Table.1 Ant species, their mean population count and relative abundance

Date of Observation	Life stages	Species observed	Mean population	Total	Relative abundance
	Initial	Technomyrmex albipes	7.2	8.8	81.8
25	settlement	Meranoplus bicolor	0.8		9.1
	stage	Paratrechina	0.8		9.1
		longicornis			
	Sex	Technomyrmex albipes	13	17.4	74.7
	differentiation	Meranoplus bicolor	2.6		14.9
39	stage	Camponotus parius	0.6		3.4
		Paratrechina	1.2		6.9
		longicornis			
	Physiological	Technomyrmex albipes	35.2	48.3	72.9
	maturity stage	Meranoplus bicolor	6.7		13.9
53		Camponotus parius	0.6		1.2
		Paratrechina longicornis	5.8		12.0
	Initial post	Technomyrmex albipes	50.4	69.3	72.7
	fertilization	Meranoplus bicolor	8.3		12.0
67	stage	Camponotus parius	2.6		3.8
		Paratrechina	8		11.5
		longicornis			
		Technomyrmex albipes	74.5	101.5	73.4
	t	Meranoplus bicolor	8.7		8.6
		Camponotus parius	2.5		2.5
81		Paratrechina	14.2		14.0
		longicornis			
		Monomorium dichorum	1.6		1.6
		Technomyrmex albipes	72.7	95.6	76.0
		Meranoplus bicolor	6.2		6.5
05		Camponotus parius	2.8		2.9
95		Oecophylla smaragdina	1.4		1.5
		Paratrechina	12.5		13.1
		longicornis			
		Technomyrmex albipes	47.7	60.7	78.6
100		Meranoplus bicolor	3.6		5.9
109		Camponotus parius	1.2		2.0
		Paratrechina	8.2		13.5
		longicornis	40.0	10 5	00.7
100		Technomyrmex albipes	40.2	48.7	82.5
123		Meranoplus bicolor	3		6.2
		Camponotus parius	0.8		1.6
		Paratrechina	4.7		9.7

Table.2 Relative abundance of ant during different stages of lac crop

Int.J.Curr.Microbiol.App.Sci (2019) 8(4): 1852-1859

		longicornis			
	Late post	Technomyrmex albipes	26	32.4	80.2
	fertilization	Meranoplus bicolor	2.8		8.6
137	stage	Camponotus parius	0.8		2.5
		Paratrechina	2.8		8.6
		longicornis			
		Technomyrmex albipes	22.5	25.5	88.2
		Meranoplus bicolor	0.6		2.4
151		Camponotus parius	0.2		0.8
		Paratrechina	2.2		8.6
		longicornis			
165		Technomyrmex albipes	3.2	3.8	84.2
		Paratrechina	0.6		15.8
		longicornis			
179		Technomyrmex albipes	1	1.6	62.5
		Paratrechina	0.6		37.5
		longicornis			
193	Maturity	Technomyrmex albipes	1.2	1.4	85.7
	stage	Paratrechina	0.2		14.3
		longicornis			

Table.3 Diversity and evenness index of ant communities at different stages of lac crop

Time of observation	Diversity index	Evenness index
(Days after inoculation)		
25	-0.60	-0.65
39	-0.80	-0.76
53	-0.81	-1.05
67	-0.86	-1.21
81	-0.87	-1.00
95	-0.82	-0.93
109	-0.70	-0.96
123	-0.62	-0.81
137	-0.69	-0.80
151	-0.45	-0.48
165	-0.44	-0.58
179	-0.66	-0.31
193	-0.41	-0.14

Fig.1 (A-F): Ant species associated with lac insect at lac park, AAU

C. Paratrechina longicornis Latreille

D. Monomorium dichorum Forel

E. Technomyrmex albipes Smith

F. Oecophylla smaragdina Fabricius

During present investigation, the highest mean individual count (81days after inoculation) of ants, highest species richness (81 and 95 days after inoculation), highest diversity index (81 days after inoculation) and highest evenness index (67days after inoculation) *i.e.* at initial post fertilization stage might be due to increase in honeydew secretion by the lac insect. The male emergence of lac insect was started 45 days after inoculation which continued for 12 days. Therefore higher secretion of honeydew after mating might be the major cause of the observed differences.

Acknowledgement

The authors are grateful to Dr. K. K. Sharma, Director and Project Co-ordinator, ICAR-IINRG, Ranchi, for his support and encouragement in conducting the present study. The authors also offer their heartiest thanks to Dr. T. V. Sajeev, Scientist, Department of Forest Entomology, Kerala Forest Research Institute, Thrissur, Kerala, for his technical guidance.

References

- Addicott, J.F. 1979. A multispecies aphid-ant association: density dependence and species-specific effects. *Can J Zool*, 57: 558–569.
- Albert, M.J., Escudero, A., Iriondo, J.M. 2005. Assessing ant seed predation in threatened plants: a case study. *Acta Oecologica*, 28: 213-220.
- Bannerman, J.A. and Roitberg, B.D. 2014. Impact of extreme and fluctuating temperatures on aphid–parasitoid dynamics. *Oikos*, 123: 89–98.
- Bingham, C.T. 1903. The fauna of British India, including Ceylon and Burma. Hymenoptera 2. Ants and cuckoo wasps. Vol. 2. Taylor & Francis, London,, 500-506.

- Bolton, B. 1994. Identification guide to the ant genera of the world. Cambridge, Harvard University Press, USA.
- Breton, L.M. and Addicott, J.F. 1992. Density-dependent mutualism in an aphid-ant interaction. *Ecology* 73: 2175–2180.
- Brian, M.V. 1978. Production ecology of ants and termites. IBP 13, Cambridge, Cambridge University Press, UK.
- Bristow, C.M. 1984. Differential benefits from ant attendance to two species of Homoptera on New York ironweed. *J Anim Ecol*, 53: 715–726.
- Carroll, C.R. and Janzen, D.H. 1973. Ecology of foraging by ants. *Annu. Rev. Ecol. Systematics*, 4: 231 -257.
- Chen Y., Wang, S. Lu, Z. and Zhang, W. 2017. Ant community dynamics in lac insect agroecosystems: conservation benefits of a facultative association between ants and lac insects. *Tropical Ecology*, 58(2): 283–293.
- Cushman, J.H. 1991. Host-plant mediation of insect mutualisms: variable outcomes in herbivore-ant interactions. *Oikos*, 61: 138–144.
- Cushman, J.H. and Whitham, T.G. 1989. Conditional mutualism in a membracidant association: temporal, age-specific, and density-dependent effects. *Ecology*, 70: 1040–1047.
- Dauber, J., Niechoj, R., Baltruschat, H., Wolters, V. 2008. Soil engineering ants increase grass root arbuscular mycorrhizal colonization. *Biology and Fertility of Soils*, 44: 791-796.
- Eastwood, R. 2004. Successive replacement of tending ant species at aggregations of scale insects (Hemiptera: Margarodidae and Eriococcidae) on Eucalyptus in south-east Queensland. *Aust J Ent* 43: 1–4.
- Gibernau, M. and Dejean, A. 2001. Ant protection of a Heteropteran trophobiont

against a parasitoid wasp. *Oecologia*, 126: 53–57.

- Holldobler, B. and Wilson, E.O. 1990. The ants. The Bilknap Press of the Harvard University Press, Cambridge, Massachusetts, 732p.
- Itioka, T. and Inoue, T. 1996. Densitydependent ant attendance and its effects on the parasitism of a honeydewproducing scale insect, *Ceroplastes rubens*. *Oecologia*, 106: 448–454.
- Kajak, A., Breymeyer, A., Pętal, J. and Olechowicz E. 1972. The influence of ants on the meadow invertebrates. *Ekologia Polska*, 20: 163-171.
- Karhu, K.J. 1998. Effects of ant exclusion during outbreaks of a defoliator and a sap-sucker on birch. *Ecological Entomology*, 23: 185-194.
- Kurmi, A., Thomas, M., Namdev, B. K., Sheela, S. and Pachori, R. 2015. Ant species in prominent lac ecosystem of central India. *Journal of Tropical forest*. 31 (III): 59-63.
- Moja-Larano, J., Wise, D.H. 2007. Direct and indirect effects of ants on a forest-floor food web. *Ecology*, 88: 1454-1465.
- Pielou, E.C. 1975. Ecological Diversity. New York, NY: Wiley.

- Rodriguez, J., Calle, Z., Montoya-Lerma, J 2008. Herbivory of *Atta cephalotes* (Hymenoptera: Myrmicinae) on three plant substrates. *Revista Colombiana de Entomologia*, 34: 156-162.
- Sanders, D. and Platner, C. 2007. Intraguild interactions between spiders and ants and top-down control in a dry grassland. *Oecologia*, 150: 611-624.
- Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
- Sharma, K.K. 2010. Ant-lac host plant association. *IINRG News Letter*. 14(2): 3.
- Stadler, B. and Dixon, A.F.G. 2005. Ecology and evolution of aphid- ant interactions. *Annual Review of Ecology*, *Evolution, and Systematics*, 36: 345-372.
- Vazquez, B.M. 1998. Hormigas (Hymenoptera: Formicidae) colectadas en necrotrampas, en treslocalidades de Jalisco, Mexico. Tesis de Licenciatura, centrouniversitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara. Zapopan, Jalisco.

How to cite this article:

Rituraj Saikia, Purnima Das, Lakshmi Kanta Hazarika, Athar Nishat Islam, Surajit Kalita and Priyanka Saikia. 2019. Species Composition, Relative Abundance and Diversity of Ants Associated with Lac Insect in Assam. *Int.J.Curr.Microbiol.App.Sci.* 8(04): 1852-1859. doi: <u>https://doi.org/10.20546/ijcmas.2019.804.216</u>