

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 03 (2019) Journal homepage: <u>http://www.ijcmas.com</u>

Original Research Article

https://doi.org/10.20546/ijcmas.2019.803.114

Completely Randomised Design (CRD) Analysis – by Manual and MS-Excel

V. Sekhar^{1*}, K. Umakrishna¹, V. Srinivasa Rao² and Ch. Satyavani³

¹Department of Statistics, ³College of Horticulture, Venkataramannagudem, Dr. YSR Horticultural University, West Godavari (District), Andhra Pradesh (State), India, PIN-534101

²Department of Statistics, Agricultural College, Bapatla, Acharya NG Ranga Agricultural University, Guntur (District), Andhra Pradesh (State), India, PIN-522101

*Corresponding author

ABSTRACT

Keywords

CRD, ANOVA, CD

Article Info

Accepted: 10 February 2019 Available Online: 10 March 2019 This study was attempted to find out best yield variety among 10 Gerebera varieties by using Completely Randomised Design. Terra Juba found best yield variety based on critical difference. CRD is most suitable for laboratory experiments, pot experiments and green house experiments.

Introduction

Completely randomised design is the one in which all the experimental units are taken in a single group which are homogeneous as far as possible. For example, all the field plots constituting the group are having the same soil fertility, soil depth, soil texture, soil moisture, etc.; This design is also called as non-restriction design (1, 2).

CRD follows two basic principles of experimental Designs

- 1. Replication
- 2. Randomisation

CRD follows ANOVA-Iway classification

Advantages of CRD

This design has complete flexibility, i.e., any number of treatments and replicates for each treatment can be taken,

Whole experimental material can be utilised in CRD.

CRD has maximum degrees of freedom for experimental error.

CRD layout is very easy and analysis of data is simplest as compared to any other design.

Missing observation creates no problem in analysis of data. The analysis is carried out in

the usual manner neglecting the missing plot as if it was not there in the experiment.

Disadvantages of CRD

Local control is absent in CRD

It is applicable for homogeneous experimental units and not for heterogeneous experimental area

Materials and Methods

In a homogeneous experimental area, a varietal trial on gerbera was conducted with 10 varieties each replicated 3 times at College of Horticulture, Venkataramannagudem in the year 2016. Flower yield in grams per plant are furnished here under analyse the data and draw your conclusion (3,4,5)

	R1	R2	R3
Batavia	7.40	10.00	9.20
Barok	11.00	8.00	9.60
Alcatraz	11.60	10.20	11.60
Faith	7.60	11.20	8.00
Terra juba	15.00	16.40	15.20
Terra dressing	12.20	9.60	8.80
Terra acoustic	8.00	10.60	9.00
Terra kline	12.00	11.80	12.00
Basic	9.80	13.80	12.60
Vesuvius	12.20	10.40	9.40

Sol

		Replicatio	ns		Treatment	Treatment
		R ₁	R ₂	R ₃	Totals	Means
Treatments	Batavia	7.40	10.00	9.20	$T_1 = 26.60$	$\alpha_1 = \frac{T_1}{r} = \frac{26.60}{3} = 8.87$
	Barok	11.00	8.00	9.60	$T_2 = 28.60$	$\alpha_2 = \frac{T_2}{r} = \frac{28.60}{3} = 9.53$
	Alcatraz	11.60	10.20	11.60	$T_3 = 33.40$	$\alpha_3 = \frac{T_3}{r} = \frac{33.40}{3} = 11.13$
	Faith	7.60	11.20	8.00	$T_4 = 26.80$	$\alpha_4 = \frac{T_4}{r} = \frac{26.80}{3} = 8.93$
	Terra juba	15.00	16.40	15.20	$T_5 = 46.60$	$\alpha_5 = \frac{T_5}{r} = \frac{46.60}{3} = 15.53$
	Terra dressing	12.20	9.60	8.80	$T_6 = 30.60$	$\alpha_6 = \frac{T_6}{r} = \frac{30.60}{3} = 10.20$
	Terra acoustic	8.00	10.60	9.00	$T_7 = 27.60$	$\alpha_7 = \frac{T_7}{r} = \frac{27.60}{3} = 9.20$
	Terra kline	12.00	11.80	12.00	T ₈ =35.80	$\alpha_8 = \frac{T_8}{r} = \frac{35.80}{3} = 11.93$
	Basic	9.80	13.80	12.60	$T_9 = 36.20$	$\alpha_9 = \frac{T_9}{r} = \frac{36.20}{3} = 12.07$
	Vesuvius	12.20	10.40	9.40	$T_{10} = 32.00$	$\alpha_{10} = \frac{T_{10}}{r} = \frac{32.00}{3} = 10.67$

The mathematical model for CRD is $x_{ij} = \mu + \alpha_i + \epsilon_{ij}$

 H_0 : There is no significant difference among mean of varieties

 $H_0: \alpha_1 = \alpha_2 = \cdots \ldots \ldots = \alpha_{10}$

 H_1 :There is significant difference among mean of varieties

$$H_0: \alpha_1 \neq \alpha_2 \neq \cdots \dots \dots \neq \alpha_{10}$$

k is no. Of varieties = 10 r is no. Of replications = 3

$$GM = \frac{GT}{kr} = \frac{324.20}{10 * 3} = \frac{324.20}{30} = 10.81$$
$$CF = \frac{GT^2}{kr} = \frac{324.20^2}{10 * 3} = \frac{324.20 * 324.20}{30} = \frac{105105.64}{30} = 3503.521$$

$$Total SS = \sum_{i=1}^{k} \sum_{j=1}^{r} x_{ij}^{2} - CF = (x_{1,1}^{2} + x_{1,2}^{2} + \dots + x_{10,3}^{2}) - CF$$

$$= (7.4^{2} + 10^{2} + \dots + 9.4^{2}) - 3503.521$$

$$= 3655.56 - 3503.521 = 152.04$$

$$Trt SS = \frac{T_{1}^{2} + T_{2}^{2} + \dots + T_{k}^{2}}{r} - CF$$

$$= \frac{26.6^{2} + 28.6^{2} + \dots + 32^{2}}{3} - 3503.521$$

$$= \frac{10845.08}{3} - 3503.521 = 111.51$$

$$Error SS = Total SS - Trt SS$$

$$= 152.04 - 111.51 = 40.53$$

Prepare	the	foll	owing	ANO	VA	Table
			<u> </u>			

Sources	Degrees	Sum	Mean	F-Cal	F-tab
Of	Of	of	Sum of		
Variation	freedom	Squares	Squares		
Treatments	k-1 10-1 = 9	Trt SS = 111.51	$Trt MSS = \frac{Trt.SS}{k-1}$ $= \frac{111.51}{9} = 12.39$	$\frac{Trt.MSS}{ErrorMSS}$ $\frac{12.39}{2.03} = 6.10 *$	$F_{k-1,k(r-1)}$ $F_{9,20} = 2.39$
Error	k(r-1) 10(3-1) = 20	Error SS = 40.53	$Error MSS = \frac{Error.S}{k(r-1)}$ $= \frac{40.53}{20} = 2.03$		
Total	kr-1 10*3-1 = 29	Total SS = 152.04			

Analysis procedure of CRD in MS-Excel

	ਜ਼ 5- ੇ - -	:			
F	-ile Home	Insert	Page Layout	Formu	las
Pa	Cut Copy → ste Clipboard	Calibrian Calibr	ri [<u>U</u> → [: For	• 11 • ,	A [*]
A	L 👻 :	\times \checkmark	f _x		
	А	В	с	D	
1		Rl	R2	R3	
2	Batavia	7.4	10	9.2	
3	Barok	11	8	9.6	
4	Alcatraz	11.6	10.2	11.6	
5	Faith	7.6	11.2	8	
6	Terra juba	15	16.4	15.2	
7	Terra dressing	12.2	9.6	8.8	
8	Terra acoustic	8	10.6	9	
9	Terra kline	12	11.8	12	
10	Basic	9.8	13.8	12.6	
11	Vesuvius	12.2	10.4	9.4	

In MS-Excel sheet, enter dataas below picture

Select Data menu in Excel \rightarrow choose Data analysis

Data Analysis		?	×
<u>A</u> nalysis Tools			NK.
Anova: Single Factor	<u>^</u>		76
Anova: Two-Factor With Replication Anova: Two-Factor Without Replication		Car	ncel
Correlation		н	eln
Covariance Descriptive Statistics		<u> </u>	cib.
Exponential Smoothing			
F-Test Two-Sample for Variances			
Fourier Analysis			
Histogram	×		

Anova: Single Factor		? ×
Input Range: Grouped By: Labels in first column	SAS2:SDS11	OK Cancel <u>H</u> elp
Output options	SFS1	

Choose Anova: Single Factor \rightarrow press OK

Give Input Range: A2:D11 \rightarrow choose Rows option under Grouped By: \rightarrow Put tick mark on Labels in first Column \rightarrow Give Alpha: 0.05 for 5% level of significance \rightarrow Give output RangeF1 under Output options (i.e. Output will display from F1 cell) \rightarrow press OK

F	G	Н	- I	J	K	L
Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Batavia	3	26.6	8.866667	1.773333		
Barok	3	28.6	9.533333	2.253333		
Alcatraz	3	33.4	11.13333	0.653333		
Faith	3	26.8	8.933333	3.893333		
Terra juba	3	46.6	15.53333	0.573333		
Terra dressing	3	30.6	10.2	3.16		
Terra acoustic	3	27.6	9.2	1.72		
Terra kline	3	35.8	11.93333	0.013333		
Basic	3	36.2	12.06667	4.213333		
Vesuvius	3	32	10.66667	2.013333		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	111.5053	9	12.38948	6.113231	0.000377	2.392814
Within Groups	40.53333	20	2.026667			
Total	152.0387	29				

In the ANOVA table of above picture, Between Groups means Treatments or Varieties and Within Groups means Error

Results and Discussion

Here, F-cal(6.10) value is > F-tab at 5% level of significance with $F_{k-1,k(r-1)}F_{9,20} = 2.39$ and also greater than F-tab at 1% level of significance with $F_{k-1,k(r-1)}F_{9,20} = 3.46$.

So, we reject Null Hypothesis. i.e., There is highly significant difference among variety means.

Standard Errors

$$SEM = \sqrt{\frac{Error\ MSS}{r}} = \sqrt{\frac{2.03}{3}} = 0.82$$
$$SED = \sqrt{2} * SEM = \sqrt{2} * 0.82 = 1.41 * 0.82 = 1.16$$

$$CD = SED * t_{tab \ at \ error \ d.f} = 1.16 * 2.09 = 2.42$$

Bar notation

We arrange the treatment means into decreasing order. Now compare treatment means difference with CD value. If the difference between treatment means is less than CD(2.42), then underline. Otherwise leave it.

• Compare mean differences of Terra Juba and Basic with CD

15.53-12.07 = 3.46 i.e., 3.46 is greater than CD(2.42). So, don't underline between these treatments

• Compare mean differences of Basic and Terra klinewith CD

12.07-11.93 = 0.14 i.e. 0.14 is less than CD(2.42). So, underline between these treatments

Terra juba	Basic	Terra kline	Alcatraz	Vesuvius	Terra dressing	Barok	Terra acoustic	Faith	Batavia
15.53	12.07	11.93	11.13	10.67	10.20	9.53	9.20	8.93	8.87

Those pairs underscored are Non-significant Those pairs not scored are Significant

In conclusion, among 10 varieties 5th variety (Terra Juba) is found best variety.

References

- 1. A text Book of Agricultural Statistics- R. Rangaswamy, New Age International Publishing Limited, Hyderabad, 2010.
- 2. Statistics for Agricultural Sciences- G. Nageswara Rao, BS Publications, Hyderabad (Second Edition), 2007.

- Programmed Statistics (Questions-Answers) 2nd Edition- B. L. Agarwal, New Age International Publishing Limited, New Delhi, 2009.
- Practical manual of STCA-101 (for class use only)- Dr. V. Srinivasa Rao and R. Srinivasulu, Agricultural College, Bapatla, 2013.
- 5. MS-Excel: Statistical Procedures- Cini Varghese, IASRI, Library Avenue, New Delhi-110012.

How to cite this article:

Sekhar, V., K. Umakrishna, V. Srinivasa Rao and Satyavani, Ch. 2019. Completely Randomised Design (CRD) Analysis – by Manual and MS-Excel. *Int.J.Curr.Microbiol.App.Sci.* 8(03): 954-959. doi: <u>https://doi.org/10.20546/ijcmas.2019.803.114</u>