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Introduction 
 

The linear mixed effect model allows 

considerable flexibility in the specification of 

the random effects structure but restricts the 

within group errors to be independent, 

identically distributed random variables with 

mean zero and constant variance. This basic 

linear mixed effects model provides an 

adequate model for many different types of 

grouped data observed in practice. However, 

there are many applications involving grouped 

data for which the within group errors are 

heteroscedastic (i.e. have unequal variances), 

correlated or both. The lme() function of nlme 

library due to pinherio and bates 2000 is used 

to fit the extended linear mixed-effects model. 

The complexity of linear mixed-effects (LME) 

models means that traditional diagnostics are 

rendered less effective. This is due to a 

breakdown of asymptotic results, boundary 

issues, and visible patterns in residual plots 

that are introduced by the model fitting 

process. Loy et al., has proposed adjustment to 

some of the well-known issues (Loy, 2013). 
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In this paper we extent the basic linear mixed 

effects model to allow heteroscedastic errors. 

We describe how the lme() function can be 

used to fit the extended linear mixed effects 

model and illustrate its various capabilities 

through examples. Also we will show the 

estimation and computational methods of 

simple linear mixed effect models can be 

applied to the extended model. To fit the 

extended model we have used a real Animal 

Science data set. The data generated from the 

experiment on chicks during 2012 by Division 

of LPT Skuast-Kashmir, Shuhama has been 

used for the present study. Data was collected 

on bodyweight of chicks measured over a 

period of 64 days. The bodyweight was 

measured on day 1 and every 7 days thereafter 

with an extra measurement on 44
th

 day. Thus 

in total eleven readings were collected from 

each chick. There were three groups of chicks 

on different diets with 5 chicks in each group. 

The data set was named Chick Weight for 

analysis and modeling in R/SAS software’s. It 

has 165 rows and 4 columns. The columns 

names are weight, time, chick and diet for 

body weight of chicks, time interval, chick 

number and diet respectively. 

 

General formulation of extended linear 

mixed effects model 

 

In the linear mixed effects model given below: 

 

yi = xiβ + zibi + ei i = 1, 2, ………….. M (2.1) 

 

bi ~ N (o, Σ), ei ~ N (0, I2 ) 

 

It is assumed that the within group errors ei are 

independent N (0, I2 ) random vectors. In 

the extended single level linear mixed effect 

model we assume heterocedastic and 

correlated within group errors, which can be 

expressed as:  

 

yi = xiβ + zibi + ei   i = 1, 2, 

………….. M (2.2)  

bi ~ N (0, Ψ), ei ~ N (0, i2
) i = 1, 2, 

………….. M 

 

Where the Λi is positive definite matrices 

parameterized by a fixed generally small, set 

of parameters  . As in basic LMEM (2.1) 

specified above, the within group ei are 

assumed to be independent for different i and 

independent of random effect bi. The 
2  is 

factored out of the Λi for computational 

reasons (It can then be eliminated from the 

profiled likelihood function). 

 

Estimation and computational methods 

 

Several methods of parameter estimation have 

been used for linear mixed effects models 

same will be used for extended linear mixed 

effect models. Among them the two general 

methods are ML and REML the detailed 

description of the two can be find from 

(Pinherio and Bates 2000, section 2.2). 

Because Λi is positive definite, it admits an 

invertible square root Λi
½
 (Thisted, 1988) with 

inverse Λi
-½ 

such that Λi = (Λi
½
)
T
 Λi

½ 
and Λi

-1 

= Λi
-½ 

(Λi
-½

)
T.

 

 

Letting yi* = (Λi
-½

)
T
yi, ei* = (Λi

-½
)
T
ei xi* = (Λi

-

½
)
T
xi, zi* = (Λi

-½
)
T
zi (2.3) 

 

and noting that ei* ~ N [(Λi
-½

)
T
0, 

2  (Λi
-½

)
T 

Λi Λi
-½

] = N (0, I2 ). 

 

Thus the model 2.2 can be revived as  

 
*

iy
 = xi

*
β + zi

*
bi + ei

* 
i = 1, 2, ………….. M 

(2.4) 

 

bi ~ N (0, Ψ), ei
*
 ~ N (0, I2 ) i = 1, 2, 

………….. M 

 

That is 
*

iy
can be described by a basic linear 

mixed effects model. Since the differential of 
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the linear transformation yi* = (Λi
-½

)
T
 yi is 

simply dyi* = |Λi
-½

| dyi, the likelihood 

function, L corresponding to the extended 

linear mixed effects model (2.2) is the 

probability density for the data given the 

parameters, but regarded as a function of the 

parameters with data fixed instead of as a 

function of data with parameters fixed and can 

be expressed as  

 

),,,|()|,,,(
1

22  



M

i

iypyL

 (2.5) 

 

Since the non-observable random vector bi i = 

1, …, M are part of the model, we must 

integrate the conditional density of the data 

given the random effect to obtain the marginal 

density for the data. We can use the 

independence of bi and ei to express this as 

 








 
M

i

i

M

i

ii yLyp
1

2/1*2

1

2/12* )|,,,(|),,,|( 

 (2.6) 

 

Where P (.) denotes a probability density 

function, the conditional density of yi and 

marginal density of bi both are multivariate 

normal. Since the likelihood L (β,  , 
2 , 

λ|y*) corresponds to a basic linear mixed 

effects models and thus all the results of the 

LMEM (see PinHerio and Bates2000 section 

2.2) applies to this as well. Thus the 

evaluation of the likelihood can be made by 

orthogonal triangular decomposition just like 

in case of simple linear mixed effects model 

leading to numerically efficient algorithm for 

maximum likelihood estimation. 

 

Although technically the random effects bi are 

not parameters for the statistical model, they 

do behave in some ways like parameters often 

we want to estimate their values. The 

conditional models of the random effects 

evaluated at the conditional estimate of β are 

best linear unbiased predictors or BLUP’s of 

the bi, i = 1, 2, --- M. They can be evaluated 

using the matrices from the orthogonal 

triangular decomposition. In practice the 

unknown vector i  is replaced by its 

maximum likelihood estimate i̂ , producing 

estimated BLUP’s 
)(ˆ

iib 
. 

 

There are several ways to define REML 

estimation criterion one definition that 

provides a convenient computational from 

(Laird and Ware, 1982) is: 

 

  dyL )|,,(y)|σ ,( L 22

R  (2.7) 

 

Which within Bayesian framework 

corresponds to assuming a locally uniform 

prior distribution for the fixed effects β and 

integrating them out of the likelihood. 

Restricted likelihood corresponding to the 

extended linear mixed effects models is 

defined as in (4.7) above by integrating out the 

fixed effects from the likelihood. 

 


 2/1*222 )|,,()|,,,()|,,( iRR yLdyLyL 

 (2.8) 

 

Since the function 
)|,,,( *2 yL 

 

corresponds to a restricted likelihood function 

of a basic linear mixed effects model. Hence 

the results of linear mixed effects models can 

be used to obtain a numerically efficient 

representation of the profiled log restricted 

likelihood (for details see of Pin Herio and 

Bates). 

 

Just like the LME models the optimization of 

the log likelihood or restricted likelihood of 

extended linear mixed effects model can 

usually accomplished through EM algorithm 

(Dempster et al., 1977) or through Newton 

Raphsan iterations (Laird and Ware, 1982; 

Lindstram and Bates, 1988; Langford, 1993, 

Thisted, 1988, §4.2.2). 
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Variance functions for modelling 

heterocedasticity  

 

Variance functions are used to model the 

variance structure of the within group errors 

using covariates. They have been studied in 

detail in the context of linear mixed effects 

models by Davidian and Giltinan (1995). 

Following Davidian and Giltinan (1995, Ch. 

4) we define the general variance function 

model for the within group errors in the 

extended single level linear mixed effects 

model (2.2) as: 

 

)|var( iij be
= 

),,(22  ijij vg
 i = 1, ---- M j 

= 1, 2 ---- n 3.1  

 

Where 
]|[ iijij byE

, 
ijv

is a vector of 

variance covariates, δ is a vector of variance 

parameters and g (.) is the variance function, 

assumed continuous in δ. For example, if the 

within group variability is believed to increase 

with same power of absolute value of a 

covariate vij, we can write the variance model 

as: var (eij|bi) = 
2 (vij)

2δ
. The variance 

function in this case is 
yxyxg ||),(   and the 

covariate vij can be the expected value μij. The 

variance function formulation (3.1) is very 

flexible and inductive, because it allows the 

within group variance to depend on the fixed 

effects β, and the random effects bi, through 

the expected values μij. However as discussed 

in Davidian and Giltinan (1995 ch. 4), it poses 

some theoretical and computational 

difficulties as the within group errors and the 

random effects can no longer assumed to be 

independent. Under the assumption that E 

[ei|bi] = 0, it is easy to verify that var (eij) = E 

(var (eij|bi), so that the dependence on the 

unobserved random effects can be avoided by 

integrating them out of the variance mode. 

Because the variance function of g is 

generally non-linear in bij integrating the 

random effects out of the variance model (3.1) 

does not lead to a computationally feasible 

optimization procedure. Instead we proceed as 

in Davidian and Gillinan (1995, Ch. 6) and use 

an approximate variance model in which the 

expected value uij are replaced by their BLUPs  

 

i

T

ij

T

ijij b̂zβxμ̂ 
 

 

Where xij and zij denotes, respectively the j
th

 

row of Xi and Zi, thus  

 

V (eij) 


22g M21,iδ),v,μ̂( ijij 

in21, j  (3.2) 

 

Under this approximation, the within group 

error are assumed independent of the random 

effects as in 2.2 and the results in section 2.1 

can still be used. Note that if the condition 

variance model (3.1) does not depend on μij, 

(3.2) gives the exact marginal variance and no 

appropriation is required.  

 

when the conditional variance model (3.1) 

depends on μij, the optimization algorithm 

follows an “iteratively reweighted” scheme, 

for given β
(t)

,  t
, λ

t
, the corresponding 

BLUP’s 
(t)

ijμ̂
 can be obtained and held fixed 

while the objective function is optimized to 

produce now estimates β
(t + 1)

, Q
(t+1)

, λ
L+ 1

 

which in turn give updated BLUP’s 
1) (t 

ijμ̂


with the process iterating until 

convergence. The resulting estimates 

approximate the (restricted) maximum 

likelihood estimates. When the variance model 

does not involve μij the likelihood can be 

directly optimized producing the exact 

(restricted) maximum likelihood estimates 

 

Variance function in nlme 

 

The nlme library of R-software provides a set 

of classes of variance functions, the varFunc 
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classes, that can be used to specify the within 

group variance models in the extended linear 

mixed effects model. Table 1 lists the standard 

varFunc classes induced in the nlme library. 

The varFunc constructors have the same name 

as their corresponding class. 

 

The two main arguments for most of the 

varFunc constructors are value and form. The 

first specifies the value of the variance 

parameter   and the second is a one-sided 

formula specifying the variance covariate V 

and optionally a stratification variable for the 

variance parameters - different parameters are 

used for each level of stratified variable.  

 

Using variance function with lme() 

 

The above mentioned variance functions can 

be used in the lme() functions using the 

weights argument. By default, weights = 

NULL, corresponding to a homescedastic 

variance model for the within group errors. 

Variance models can be specified in weights 

either as a one-sided formula, in which case it 

is passed as the single argument to the 

varFixed constructor, or as a varFunc object, 

created using the standard constructors given 

in 3.1. 

 

To illustrate the use of variance functions with 

lme(), we use the Body Weight data set 

introduced earlier. The function grouped 

Data() of the nlme library of R-software and 

dotplot() function of lattice library were used 

for the graphical summary so as to understand 

the nature of the data. The plot method for the 

grouped Data class allows an optional 

argument outer that can be either a logical 

value or a formula. When this argument is 

used the panels are determined by the factor or 

combination of factors given in the outer 

formula. This provides a strong visual 

comparison of the difference between the 

levels of the factor. The graphic summary is 

reported below: 

Figure 1 provides a comparison of difference 

between the diets for the bodyweight data set. 

It produces three panels for the three different 

diets. Each panel represents a scatter plot of 

the response versus a continuous variate. The 

points in the each group are joined by lines, 

where each line represents the weight of a 

particular chick over a period of 64 days.  

 

It also indicates strong differences among the 

three diet groups. There is also evidence of a 

chick in diet group 2 with an unusually high 

initial body weight. The body weights appear 

to grow linearly with time, possibly with 

different intercepts and slopes for each diet, 

and with intercept and slope random effects to 

account for chick-to-chick variation. The dot-

plot of bodyweights of chicks measured over a 

period of 64 days is reported in Figure 2. 

 

As can be seen from the figure the 

bodyweights varies with all the three diets, 

diet-3 shows the maximum gain in weight of 

chicks followed by diet-2. However in diet-2 

there is a chick with unusually high initial 

bodyweight.  

 

We first fit a model using the lme() function 

of R-software were we assume 

homocedasticity i.e., we fit a homocedastic 

mixed effects model by using the argument 

weight=NULL in the lme() function the 

commands for all the functions used are given 

in the chapter one of the manuscript. The 

results obtained are summarised below.  

 

The Table 2 provides the values of different 

fixed effects and their interaction values along 

with their standard error, t-cal and p-value. 

From the table it is clear that there appears to 

be significant increase in growth rate 

associated with Diet2 (TimeDiet2) and a 

boarder line significant increase in growth rate 

for Diet3 (TimeDiet3). We can further assess 

the variability in the parameter estimates with 

the intervals method. 
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Table.1 Standard var-Func classes 

 
VarFixed  Fixed variance  

VarIdent Different variance per stratum  

VarPower  Power of covariance  

VarExp Exponential of covariates  

VarConstPower  constant plus power of covariates  

VarCanb Combination of variance functions 

 

Table.2 Summary of the results of the fixed effects obtained by fitting homocedastic mixed 

effects model 

 
 Coefficient Standard Error t value p value 

(Intercept) 251.65 13.09 19.22 0.0000 

Time 0.36 0.091 3.95 0.0001 

Diet2 200.66 22.68 8.85 0.0000 

Diet3 252.07 22.68 11.11 0.0000 

Time:Diet2 0.61 0.16 3.84 0.0002 

Time:Diet3 0.29 0.15 1.89 0.0606 

 

Table.3 95% confidence intervals for fixed effects 

 
 Estimate Lower Upper 

(Intercept) 251.65 225.78 277.51 

Time 0.36 0.179 0.54 

Diet2 200.66 151.67 249.66 

Diet3 252.07 203.08 301.07 

Time:Diet2 0.06 0.29 0.092 

Time:Diet3 0.29 -0.01 0.61 

 

Table.4 95% confidence intervals for random effects 

 
 Estimate  Lower Upper 

Sd(intercept) 36.94 25.10 54.36 

sd(Time) 0.248 0.16 0.37 

cor((Inter),Time) -0.149 -0.61 0.39 

Within group standard error 4.44 3.95 4.98 

 

Table.5 Summary of the results of the fixed effects obtained by fitting varPower 

(Heterocedastic) mixed effects model 

 
 Value Std. Error t-value p-value 

(Intercept) 251.65 13.06 19.25 0.0000 

Time 0.36 0.09 4.08 0.0001 

Diet2 200.66 22.65 8.86 0.0000 

Diet3 252.07 22.66 11.12 0.0000 

Time:Diet2 0.61 0.16 3.87 0.0002 

Time:Diet3 0.29 0.15 1.89 0.0601 
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Table.6 95% confidence intervals for fixed effects 

 

 Estimate  Lower  Upper 

Intercept 251.60 22.79 277.41 

Time 0.36 0.19 0.54 

Diet2 200.77 151.83 249.72 

Diet3 252.17 203.21 301.12 

Time:Diet2 0.60 0.29 0.91 

Time:Diet3 0.29 -0.01 0.60 

 

Table.7 95% confidence intervals for random effects 

 

 Estimate  Lower Upper 

Sd(intercept) 36.89 25.05 54.33 

sd(Time) 0.24 0.16 0.37 

cor((Inter),Time) -0.15 -0.62 0.40 

Variance function Power 0.54 0.21 0.88 

Within Group Standard error 0.18 0.024 0.13 

 

Table.8 Empirical comparison of the fitted models i.e. homocedastic mixed effects model and 

varPower (heterocedastic) mixed effects model 

 

Models AIC BIC logLik L. ratio test p-value 

Homocedastic Model 1171.72 1203.07 -575.85   

varPower Model 1163.92 1198.41 -570.96 9.80 0.0017 

 

Fig.1 Weight of chicks versus time for three different diets 
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Fig.2 Dot-Plot of bodyweight of chicks measured over a period of 64 days. The chicks are 

divided into three groups on different diets 

 

 
 

Fig.3 Residual plot corresponding to the fitted homocedastic model against number of chicks 
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Fig.4 Plot of standardized residuals versus fitted values for the homoscedastic fitted model 
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Fig.5 Residual plot corresponding to the fitted VarPower (heterocedastic) model against number 

of chicks 
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Fig.6 Plot of standardized residuals versus fitted values for the VarPower (heterocedastic) fitted 

model 
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The approximate 95% confidence intervals 

for the fixed and random effects of the 

homocedastic mixed effects model are 

reported in Table 3 and 4 respectively 

 

As can be seen from the values in the table 

the within group error assume a large value of 

4.44 with a 95% interval of 3.95-4.98. 

 

The box plots of residuals of the fitted 

homocedastic model for each of the chick is 

given in Figure 3. In each of the boxplot the 

dot in the center represents the mean value of 

residuals for a particular chick and the points 

outside the box represent the outlier residuals. 

 

As can be seen from the Figure 3 the largest 

deviation in the residuals are associated with 

13
th

 chick. 

 

In order to check the adequacy of the 

homocedastic fitted model we make a plot of 

fitted values against standardized residuals 

which is given in Figure 4. 

 

Figure 4, gives clear indication of within-

group heteroscedasticity. Because the fitted 

values are bounded away from zero, we can 

use the varPower variance function to model 

the heteroscedasticity. The variance model 

represented by varPower is 

 
 22 ||)( ijij veVar 

  
 

Corresponding to the variance function 

 
||)( ijij vvg 

 
 

Which is a power of the asolute value of 

variance covariate. The parameter  is 

unrestricted (i.e., may take any value in the 

real line). The main arguments to varPower 

constructor are value and form, which 

specifies respectively an initial value of  , 

when this is allowed to vary in optimization 

and a one-sided formula with the variance 

covariate. 

 

We simply used the update function to 

incorporate the heterocedasticity in the 

already fitted homocedastic model and name 

this model as varPower model. The results 

obtained are summarized in Table 5: Table 5 

provides the values of different fixed effects 
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and their interaction values along with their 

standard error, t-cal and p-value. From the 

table it is clear that there appears to be 

significant increase in growth rate associated 

with Diet2 (TimeDiet2) and a boarder line 

significant increase in growth rate for Diet3 

(TimeDiet3). We can further assess the 

variability in the parameter estimates with the 

intervals method. 

 

The approximate 95% confidence intervals 

for the fixed and random effects of the 

homocedastic mixed effects model are 

reported in Table 6 and Table 7, respectively. 

 

As can be seen from the values in the table 

the within group error assume a smaller value 

of 0.18 with a 95% interval of 0.024-0.13. 

 

The box plots of residuals of the fitted 

heterocedastic model for each of the chick is 

given in Figure 5. A big dot in the center of 

each box plot represents the mean value of 

residuals for a particular chick and the dotted 

lines on both sides of box shows the range of 

the residuals. Also the points outside the box 

represent the outlier residuals. 

 

As can be seen from the Figure 5 the largest 

deviation in the residuals are associated with 

13
th

 chick Also smallest range of residuals is 

seen in the 14
th

 chick.  

 

To check the adequacy of the heterocedastic 

fitted model we can make a plot of fitted 

values against standardized residuals which is 

given in Figure 6. 

 

From the figure it is clear that the varPower 

variance function adequately represents the 

within group heteroscedasticity.  

 

We can test the significance of the variance 

parameter in the var Power model using the 

anova method, which, as expected, strongly 

rejects the assumption of homoscedasticity 

(i.e., δ = 0). The results obtained by using the 

ANOVA method are summarised in Table 8. 

 

AIC and BIC vales are the model selection 

criterion lesser the value of the AIC/BIC 

better is the model fit. Thus it can be 

concluded from the results in the table above 

that the var Power (heterocedastic) model is 

the better fit since its AIC/BIC is lowest also 

the likelihood ratio test is significant which 

supports our conclusion. 
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