National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Recent years have seen a resurgence of interest in under-utilized legumes with high nutritional and therapeutic properties. Ricebean are an appropriate option for inclusion in the list of existing legumes. Ricebean seeds are a well-balanced source of constituents that are beneficial to health and combat malnutrition. Although very important from a dietary point of view in Burkina Faso, there is as yet no research into the nutrient composition and antioxidant properties of rice beans. The aim of this study was to analyze the biochemical composition of a ricebean collection. Total of 24 ricebean seed accessions were evaluated for various biochemical traits using official and standard analytical methods. Results showed great variability in protein content (11.493 to 33.852 mg/g) and sugar content (4.207 to 8.48 mg/g). Concentrations of phenolic compounds such as phenols and flavonoids varied respectively from 1.140 to 3.446 mg EQ/g and from 0.559 to 1.322 mg EAG/g. DPPH ranged from 3.285% to 27.018% and FRAP from 2.042 to 35.21 mM EAA/g DM. Correlation coefficient between parameters was calculated to understand the relationship between variables. First three principal components contributed 62.7% of the variation. CAH formed four groups based on levels of macromolecules, ascorbic acid, pigments, phenolic compounds and antioxidants. Accessions RB27, RB10 RB59, RB60 RB127 RB79 showed interesting antioxidant and phenolic activity, high protein, ascorbic acid and sugar content. Results of this study suggest the use of these potential accessions in breeding programs with the main aim of improving the nutritional quality of ricebean.
Alirezalu, A., Salehi, P., Ahmadi, N., Sonboli, A., Aceto, S., Hatami Maleki, H., and Ayyari, M. 2018. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. International Journal of Food Properties, 21(1), 452–470. https://doi.org/10.1080/10942912.2018.1446146
Arvouet-Grand, A.; Vennat, B.; Pourrat, A. and Legret, P. 1994. Standardisation d’un extrait de propolis et identification des principaux constituants. J. Pharm. Belg. 49, 462–468.
Awasthi C. P., Thakur M., Dua R. P. and Dhaliwal Y. S., 2011. Biochemical evaluation of some promising varieties/genotypes of rice bean [Vigna umbellata Thunb. (Ohwi and Ohashi)]. Indian Journal of Agricultural Biochemistry, 24, 39–42.
Ayilara M S., Abberton M., Oyatomi O A., Odeyemi O. and Babalola O O., 2022. Potentials of underutilized legumes in food security. Front Soil Sci. 2:1–12 https://doi.org/10.3389/fsoil.2022.1020193
Bajaj M., 2014. Nutrients and antinutrients in rice bean (Vigna umbellata) varieties as effected by soaking and pressure cooking. Asian J Dairy Food Res 33:71–74. https://doi.org/10.5958/j.0976-0563.33.1.015
Bakoyiannis I., Daskalopoulou A., Pergialiotis V. and Perrea D., 2019. Phytochemicals and cognitive health: are flavonoids doing the trick? Biomed. Pharmacother. 109, 1488–1497. https://doi.org/10.1016/j.biopha.2018.10.086
Baruah K., Das M. and Bhattacharyya R., 2018. Formulation and quality evaluation of ricebean (Vigna umbellata) based convenient food multi mixes. International Journal of Home Science 4(2): 216-221.
Bhagyawant S S., Bhadkaria A., Narvekar D T. and Srivastava N., 2019. Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. Biocatal Agric Biotechnol 20:101193 https://doi.org/10.1016/j.bcab.2019.101193
Bouaziz M., Grayer R. J., Simmonds M. S. J., Damak M. and Sayadi S., 2005. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J. Agric. Food Chem. 53, 236–241. https://pubs.acs.org/doi/abs/10.1021/jf048859d
Bradford M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1?2), 248?254. https://doi.org/10.1016/0003-2697(76)90527-3.
Broadhurst R. B. and Jones W. T., 1978. Analysis of Condensed Tannins Using Acidified Vanillin. 29, 788–794. https://doi.org/10.1002/jsfa.2740290908
Cai Y., Luo Q., Sun M. and Corke H., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
Ddamulira G. and Santos C., 2015. Seed yield and protein content of Brazilian cowpea genotypes under diverse Mgandan environments. Am. J. Plant Sci. 6:2074. https://doi.org/10.4236/ajps.2015.613208
Dhillon D K. and Tanwar B., 2018. Rice bean: a healthy and cost-effective alternative for crop and food diversity. J Food Secur 10(3):25–535. https://doi.org/10.1007/s12571-018-0803-6
Dicko M. H., Hilhorst R., Gruppen H., Laane C., Van Berkel W. J. H. and Voragen A. G. J., 2002. Zymography of monophenolase and o-diphenolase activities of polyphenol oxidase. Analytical Biochemistry, 306 (2), 336–339. https://doi.org/10.1006/abio.2002.5707
Dubois, Michel, K. A. Gille, J. K. Hamilton, P. A. Rebers, and and Fred Smith. 2009. “Cloning, Expression in Pichia Pastoris, and Characterization of a Thermostable GH5 Mannan Endo-1,4-Beta-Mannosidase from Aspergillus Niger BK01.” Microbial Cell Factories 8:59.
Edwards A. J., Vinyard B. T., Wiley E. R., Brown E. D., Collins J. K., Perkins-veazie P., Baker R. A. and Clevidence, B. A., 2003. Consumption of Watermelon Juice Increases Plasma Concentrations of Lycopene and b-Carotene in Humans. The Journal of Nutrition, 133 (4), 1043–1050. https://doi.org/10.1093/jn/133.4.1043
Fanciullino A. L. and H. Gautier., 2014. “Enrichissement Des Fruits Charnus En Caroténoïdes?: Exemple de La Tomate et Des Agrumes.” 42:77–89.
Gholizadeh-Moghadam N., Hosseini B. and Alirezalu A., 2019. Classification of barberry genotypes by multivariate analysis of biochemical constituents and HPLC profiles. Phytochem. Anal. 1–10. http://doi.org/10.1002/pca.2821.
Ginwala R., Bhavsar R., Chigbu D. I., Jain P. and Khan Z. K., 2019. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 8 (2), 35. http://doi:10.3390/antiox8020035.
Gonçalves F. V., Medici L. O., Da Fonseca M. P. S., Pimentel C., Gaziola S. A. and Azevedo R. A., 2020. Protein, phytate and minerals in grains of commercial cowpea genotypes. Anais da Academia Brasileira de Ciencias, 92, 1?16. https://doi.org/10.1590/0001-3765202020180484
Grassi S., Piro G., Lee J. M., Zheng Y., Fei Z., Dalessandro G., Giovannoni J. J. and Lenucci M. S., 2013. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics, 14 (781), 1471–2164. https://doi.org/10.1186/1471-2164-14-781
Hinneburg I., Damien Dorman H. J. and Hiltunen R., 2006. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97 (1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028
Katoch R., 2011. Morpho-physiological and nutritional characterization of ricebean (Vigna umbellata). Acta Agron Hungarica. 59:125–36. https://doi.org/10.1556/AAgr.59.2011.2.3.
Katoch R., 2013. Nutritional evaluation, protein digestibility and profiling of different Vigna species. Ind J Agric Biochem 26:32–35
Khabiruddin M., Gupta S N. and Tyagi C S., 2002. Nutritional composition of some improved genotypes of ricebean (Vigna umbellata). Forage Research 28: 104-105
Mehta N., Patani P. and Singhvi I., 2018. Colorimetric estimation of ascorbic acid from different varities of tomatoes cultivated in Gujarat. World Journal of Pharmaceutical Research, 7 (4), 1376–1384. https://doi.org/10.20959/wjpr20184-11216
Mole S. and Waterman P. G., 1987. Tannins as Antifeedants to Mammalian Herbivores—Still an Open Question? In Allelochemicals: Role in Agriculture and Forestry (Vol. 330, pp. 51–572). American Chemical Society. https://doi.org/doi:10.1021/bk-1987-0330.ch051
Nagata M. and Yamashita I., 1992. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi, 39 (10), 925–928. https://doi.org/10.3136/nskkk1962.39.925
Pattanayak A., Roy S., Sood S., Iangrai B., Banerjee A., Gupta S. and Joshi D C., 2019. Rice bean: a lesser-known pulse with well-recognized potential. Planta 250(3):873–890. https://doi.org/10.1007/s00425-019-03196-1
Sánchez-Rangel J. C., Benavides J., Heredia J. B., Cisneros-Zevallos L. and JacoboVelázquez D. A., 2013. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods, 5 (21), 5990– 5999. https://doi.org/10.1039/c3ay41125g
Singleton V. L., Orthofer R. and Lamuela-Raventós R. M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
Toomer O. T., 2018. Nutritional chemistry of the peanut (Arachis hypogaea). Crit. Rev. Food Sci. Nutr. 58, 3042–3053. https://doi.org/10.1080/10408398.2017.1339015
Veljovi? M., Davidovi? S., Peci? S., Despotovi? S., Leskošek-?ukalovi? I., Vukosavljevi? P., Pintoa M. P., Santosb C. N., Henriquesa C., Limaa G. and Quedas F., 2012. Lycopene content and antioxidant capacity of tomato jam. CEFood 2012 - Proceedings of 6th Central European Congress on Food, 138–143.
Weng, Y., Ravelombola, W. S., Yang, W., Qin, J., Zhou, W., Wang, Y. J., et al. (2018). Screening of seed soluble sugar content in cowpea [Vigna unguiculata (L.) Walp]. Am. J. Plant Sci. 9, 1455–1466. https://doi.org/10.4236/ajps.2018.97106![]() |
![]() |
![]() |
![]() |
![]() |