Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:3, March, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(3): 78-101
DOI: https://doi.org/10.20546/ijcmas.2024.1303.007


A Review on Biodegradation of Toxic Dyes of South Gujarat, India
Aishwarya Bharucha1, Sumaiya A. Shaikh2* and Arti Gaur1
1Parul University, Vadodara, Gujarat, India
2C.B.Patel Computer College & J.N.M.Patel Science College, Bharthana (Vesu), Surat-395017, India
*Corresponding author
Abstract:

Degradation of toxic dyes by isolation and Development of Microbial consortia provides a comprehensive overview of the environmental impact of textile dye effluents, the historical usage of dyes, the classification of textile dyes, methods for textile dye removal, and the future prospects for enhancing dye biodegradation outcomes. It emphasizes the need for further research to improve dye biodegradation outcomes, including the identification of relevant microorganisms, experimental factor limitations, bioremediation sites, and degradation pathways prior to deploying microorganisms in the field. The document also discusses the characteristics of textile effluents, including the presence of various metals, dyes, and other contaminants, and the differences between simulated and real industrial wastewater. Additionally, it highlights the hazardous nature of industrial wastewater, particularly in terms of organic matter concentration and the presence of metals such as cadmium, lead, zinc, and chromium. The survey conducted to assess the biodegradability of industrial textile wastewater is also mentioned, focusing on specific conductivity, pH, TC, total phosphorus, total nitrogen, and chloride content. Overall, the document underscores the importance of understanding degradation pathways, environmental conditions, and kinetics influencing contaminant removal, and the need to ensure minimal harm to plants and aquatic life during the degradation process.


Keywords: Textile dye, Biodegradation, Effluent, Wastewater treatment, Azo dyes


References:

Abdi, M., Balagabri, M., Karimi, H., Hossini, H., & Rastegar, S. O. (2020). 'Degradation of crystal violet (CV) from aqueous solutions using ozone, peroxone, electroperoxone, and electrolysis processes: A comparison study.' Applied Water Science, 10, 1–10. [CrossRef]

Abel, A. (2012). The history of dyes and pigments: From natural dyes to high performance pigments. In Colour design (pp. 557-587). Woodhead Publishing.

Abou-El-Souod, G., Hamouda, R.A., & El-Sheekh, M. (2020). 'Influence of heavy metal as co-contamination on biodegradation of dyes by free and immobilized Scenedesmus obliquus.' Desalination and Water Treatment, 182, 351–358. [CrossRef]

Abu-Saied, M. A., Abdel-Halim, E. S., Fouda, M. M., and Al-Deyab, S. S. (2013). 'Preparation and characterization of iminated polyacrylonitrile for the removal of methylene blue from aqueous solutions.' International Journal of Electrochemical Science, 8, pp. 5121-5135.

Agrawal, K., & Verma, P. (2020). 'Myco-valorization approach using entrapped Myrothecium verrucaria ITCC-8447 on synthetic and natural support via column bioreactor for the detoxification and degradation of anthraquinone dyes.' International Biodeterioration & Biodegradation, 153, 105052. [CrossRef]

Ain, Q.U., Rasheed, U., Yaseen, M., Zhang, H., & Tong, Z. (2020). 'Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite.' Journal of Hazardous Materials, 397, 122758. [CrossRef]

Ajaz, M., Shakeel, S., and Rehman, A. (2020). 'Microbial use for azo dye degradation-a strategy for dye bioremediation.' International Microbiology, 23(2), pp. 149?159.

Akhtar, A., Aslam, Z., Asghar, A., Bello, M. M., & Raman, A. A. A. (2020). 'Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism.' Journal of Environmental Chemical Engineering, 8, 104055. [CrossRef]

Al-Amrani, W.A., Lim, P.E., Seng, C.E., & Wan Ngah, W.S. (2014). Factors affecting bio-decolorization of azo dyes and COD removal in anoxic-aerobic REACT operated sequencing batch reactor. Journal of Taiwan Institute of Chemical Engineers, 45(2), 609-616.

Al-Tohamy, R., Sun, J., Fareed, M.F., Kenawy, E.R., & Ali, S.S. (2020). 'Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification.' Scientific Reports, 10, 1–16. [CrossRef] [PubMed]

Ali, H. (2010). 'Biodegradation of Synthetic Dyes: A Review.' Water Air Soil Pollution, 213, pp. 251-273.

Ali, S.S., Sun, J., Koutra, E., El-Zawawy, N., Elsamahy, T., & El-Shetehy, M. (2021). 'Construction of a novel cold-adapted oleaginous yeast consortium valued for textile azo dye wastewater processing and biorefinery.' Fuel, 285, 119050. [CrossRef]

Anjaneyulu, Y., Sreedhara Chary, N., and Raj, S. S. D. (2005). 'Decolourization of Industrial Effluents-Available Methods and Emerging Technologies—A Review.' Reviews in Environmental Science and Biotechnology, 4, p. 245.

Anjaneyulu, Y., Sreedhara Chary, N., and Raj, S. S. D. (2005). 'Decolourization of Industrial Effluents-Available Methods and Emerging Technologies—A Review.' Reviews in Environmental Science and Biotechnology, 4, p. 245.

Aplin, R. and Waite, T. D. (2000). 'Comparison of three advanced oxidation processes for degradation of textile dyes.' Water Science and Technology, 42, pp. 345-354.

Aristizábal, A., Perilla, G., Lara-Borrero, J.A., & Diez, R. (2020). 'KrCl and XeClexcilamps and LP-Hg lamp for UV and UV/H2O2 decolourization of dyes in water.' Environmental Technology, 41, 238–250. [CrossRef]

Ayed, L., Ladhari, N., Achour, S., & Chaieb, K. (2020). 'Decolorization of Reactive Yellow 174 dye in real textile wastewater by an active consortium: Experimental factorial design for bioremediation process optimization.' Journal of the Textile Institute. [CrossRef]

Babu, S. S., Mohandass, C., Vijayaraj, A. S., and Dhale, M. A. (2015). 'Detoxification and color removal of Congo Red by a novel Dietzia sp. (DTS26)–a microcosm approach.' Ecotoxicology and Environmental Safety, 114, pp. 52-60.

Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial De-colorization of Textile Dye Containing Effluents: A Review. Biotechnology, 58, 217-227.

Banat, I. M., Nigam, P., Singh, D., and Marchant, R. (1996). 'Microbial Decolorization of Textile Dye-Containing Effluents: A Review.' Bioresource Technology, 58, p. 217.

Barnett, J. R., Miller, S., & Pearce, E. (2006). Colour and art: A brief history of pigments. Optics & Laser Technology, 38(4-6), 445-453.

Basutkar, M.R., & Shivannavar, C.T. (2019). Decolorization Study of Reactive Red-11 by using Dye Degrading Bacterial Strain Lysinibacillus boronitolerans CMGS-2. International Journal of Current Microbiology and Applied Sciences, 8(6), 1135-1143.

Behl, K., Joshi, M., Sharma, M., Tandon, S., Chaurasia, A.K., Bhatnagar, A., & Nigam, S. (2019). 'Performance evaluation of isolated electrogenic microalga coupled with graphene oxide for decolorization of textile dye wastewater and subsequent lipid production.' Chemical Engineering Journal, 375, 121950. [CrossRef]

Benkhaya, S., M'rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891.

Berkessa, Y.W., Yan, B., Li, T., Jegatheesan, V., & Zhang, Y. (2020). 'Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics.' Chemosphere, 238, 124539. [CrossRef]

Bhatia, D., Sharma, N. R., Singh, J., and Kanwar, R. S. (2017). 'Biological methods for textile dye removal from wastewater: A review.' Critical Reviews in Environmental Science and Technology, 47(19), pp. 1836-1876.

Bili ´nska, L.; Gmurek, M.; Ledakowicz, S. (2016). Comparison between industrial and simulated textile wastewater treatment by AOPs—Biodegradability, toxicity and cost assessment. Chem. Eng. J., 306, 550–559.

Bili´nska, L., Blus, K., Foszpa´nczyk, M., Gmurek, M., & Ledakowicz, S. (2020). 'Catalytic ozonation of textile wastewater as a polishing step after industrial scale electrocoagulation.' Journal of Environmental Management, 265, 110502. [CrossRef]

Bonetto, L. R., Crespo, J. S., Guégan, R., Esteves, V. I., and Giovanela, M. (2021). 'Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: Full factorial design, equilibrium, thermodynamics and kinetics aspects.' Journal of Molecular Structure, 1224, 129296.

Bousher, A., Shen, X., and Edyvean, R. G. (1997). 'Removal of coloured organic matter by adsorption onto low-cost waste materials.' Water Research, 31, pp. 2084-2092.

Burkinshaw, S. M., Jeong, D. S., & Chun, T. I. (2013). The coloration of poly (lactic acid) fibres with indigoid dyes: Part 2: Wash fastness. Dyes and Pigments, 97(2), 374-387.

Cai, J., Pan, A., Li, Y., Xiao, Y., Zhou, Y., Chen, C., Sun, F., & Su, X. (2021). 'A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors.' Chemosphere, 263, 127922. [CrossRef]

Carvalho, J.R.S., Amaral, F.M., Florencio, L., Kato, M.T., Delforno, T.P., & Gavazza, S. (2020). 'Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22.' Chemosphere, 242, 125157. [CrossRef]

Castro, F.D., Bassin, J.P., Alves, T.L.M., Sant’Anna, G.L., & Dezotti, M. (2020). 'Reactive Orange 16 dye degradation in anaerobic and aerobic MBBR coupled with ozonation: Addressing pathways and performance.' International Journal of Environmental Science and Technology, 1–20. [CrossRef]

Chang, J. S., Chou, C., Lin, Y., Ho, J., & Hu, T. L. (n.d.). Kinetic Characteristics of Bacterial AzoDye Decolorization by Pseudomonas luteola. Water Research, 35, 2041.

Chang, J. S., Chou, Y. P., & Chen, S. Y. (n.d.). Decolorization of Azo Dyes with Immobilized Pseudomonas luteola. Process Biochemistry, 36, 757.

Chang, J. S., & Lin, C. Y. (2001). Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp. Biotechnology Letters, 23, 631-636.

Chanwala, J., Kaushik, G., Dar, M. A., Upadhyay, S., & Agrawal, A. (2019). Process optimization and enhanced decolorization of textile effluent by Planococcus sp. isolated from textile sludge. Environmental Technology & Innovation, 13, 122-129.

Chatterjee, S., Dey, S., Sarma, M., Chaudhuri, P., & Das, S. (2020). 'Biodegradation of Congo Red by Manglicolous Filamentous Fungus Aspergillus flavus JKSC-7 Isolated from Indian Sundarbans Mangrove Ecosystem.' Applied Biochemistry and Microbiology, 56, 708–717. [CrossRef]

Chekalin, E., Rubanovich, A., Tatarinova, T. V., Kasianov, A., Bender, N., Chekalina, M.,... & Morozova, I. (2019). Changes in biological pathways during 6,000 years of civilization in Europe. Molecular Biology and Evolution, 36(1), 127-140.

Chen, G., An, X., Feng, L., Xia, X., & Zhang, Q. (2020). 'Genome and transcriptome analysis of a newly isolated azo dye-degrading thermophilic strain Anoxybacillus sp.' Ecotoxicology and Environmental Safety, 203, 111047. [CrossRef] [PubMed]

Chen, J., Xing, Z., Han, J., Su, M., Li, Y., & Lu, A. (2020). 'Enhanced degradation of dyes by Cu-Co-Ni nanoparticles loaded on aminomodified octahedral metal–organic framework.' Journal of Alloys and Compounds, 834, 155106. [CrossRef]

Chequer, F. M. D., Dorta, D. J., and de Oliveira, D. P. (2011). 'Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks?' In Advances in treating textile effluent. InTech, pp. 27-49.

Chiriu, D., Ricci, P. C., Carbonaro, C. M., Nadali, D., Polcaro, A., & Collins, P. (2017). Raman identification of cuneiform tablet pigments: Emphasis and colour technology in ancient Mesopotamian mid-third millennium. Heliyon, 3(3).

Chokshi, N. P., & Ruparelia, J. P. (2020). 'Catalytic Ozonation of Reactive Black 5 Over Silver–Cobalt Composite Oxide Catalyst.' Journal of the Institution of Engineers Series A, 101, 433–443. [CrossRef]

Cornelius Drebbel combined tin with cochineal red, which is derived from insects, in 1630 to increase the stability of natural dyes and create the first dye that was mistakenly labeled as manmade.

Criado, S. P., Gonçalves, M. J., Ballod Tavares, L. B., & Bertoli, S. L. (2020). 'Optimization of the electrocoagulation process for disperse and reactive dyes using the response surface method with reuse application.' Journal of Cleaner Production, 275, 122690. [CrossRef]

Cui, M.H., Sangeetha, T., Gao, L., & Wang, A.J. (2019). 'Efficient azo dye wastewater treatment in a hybrid anaerobic reactor with a built-in integrated bioelectrochemical system and an aerobic biofilm reactor: Evaluation of the combined forms and reflux ratio.' Bioresource Technology, 292, 122001. [CrossRef] [PubMed]

Dafale, N., Rao, N. N., Meshram, S. U., & Wate, S. R. (2008). Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium–biostimulation and halo tolerance. Bioresource technology, 99(7), 2552-2558.

Das, A., & Mishra, S. (2017). Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study. Journal of Environmental Chemical Engineering, 5(1), 612–627.

De Gisi, S., Lofrano, G., Grassi, M., and Notarnicola, M., 2016. 'Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review.' *Sustainable Materials and Technologies*, 9, pp. 10-40.

Delpla, I., Jung, A.V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environmental International, 35(8), 1225-1233.

Demirbas, A., 2009. 'Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review.' *Journal of Hazardous Materials*, 167, pp. 1-9.

Dhaouefi, Z., Toledo-Cervantes, A., Ghedira, K., Chekir-Ghedira, L., & Muñoz, R. (2019). 'Decolorization and phytotoxicity reduction in an innovative anaerobic/aerobic photobioreactor treating textile wastewater.' Chemosphere, 234, 356–364. [CrossRef]

Di, J., Zhu, M., Jamakanga, R., Gai, X., Li, Y., & Yang, R. (2020). 'Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for the decomposition of Rhodamine B.' Journal of Water Process Engineering, 37, 101386. [CrossRef]

Ding, X., Gutierrez, L., Croue, J.P., Li, M., Wang, L., & Wang, Y. (2020). 'Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison.' Chemosphere, 253, 126655. [CrossRef]

dos Santos, A. B., Cervantes, F. J., and van Lier, J. B. (2007). 'Review Paper on Current Technologies for Decolourisation of Textile Wastewaters: Perspectives for Anaerobic Biotechnology.' Bioresource Technology, 98, p. 2369.

Dos Santos, A. J., Brillas, E., Cabot, P. L., &Sirés, I. (2020). 'Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions.' Science of the Total Environment, 747, 141541. [CrossRef]

Emadi, Z., Sadeghi, M., Mohammadi-Moghadam, F., Sadeghi, R., Forouzandeh, S., & Sadeghi, R. (2020). 'Decolorization of reactive black-5 high concentration by vermicompost microflora and detoxification of by-products by UV-C/H2O2 post-treatment.' Pollution, 6, 503–511.

Ergan, B.T., & Gengec, E. (2020). 'Dye degradation and kinetics of an online Electro-Fenton system with thermally activated carbon fiber cathodes.' Journal of Environmental Chemical Engineering, 8, 104217. [CrossRef]

European Commission. (2019). European IPPC Bureau Review of the Best Available Techniques (BAT) Reference Document for the Textiles Industry; European Commission: Bruseels, Belgium, Volume 1, pp. 2–32.

Fan, T., Deng, W., Feng, X., Pan, F., & Li, Y. (2020). 'An integrated electrocoagulation—Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms.' Chemosphere, 254, 126776. [CrossRef] [PubMed]

Farouk, R., & Gaffer, H. E. (2013). Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye. Carbohydrate Polymers, 97(1), 138-142.

Fattahimoghaddam, H., Mahvelati-Shamsabadi, T., & Lee, B.K. (2021). 'Efficient Photodegradation of Rhodamine B and Tetracycline over Robust and Green g-C3N4 Nanostructures: Supramolecular Design.' Journal of Hazardous Materials, 403, 123703. [CrossRef]

Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of Synthetic Dyes from Wastewaters: A Review. Environmental International, 30, 953.

Franca, R.D.G., Vieira, A., Carvalho, G., Oehmen, A., Pinheiro, H.M., Barreto Crespo, M.T., & Lourenço, N.D. (2020). 'Oerskoviapaurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite.' Ecotoxicology and Environmental Safety, 191, 110007. [CrossRef]

Gadow, S.I., & Li, Y.Y. (2020). 'Development of an integrated anaerobic/aerobic bioreactor for biodegradation of recalcitrant azo dye and bioenergy recovery: HRT effects and functional resilience.' Bioresource Technology Reports, 9, 100388. [CrossRef]

Gao, T., Qin, D., Zuo, S., Peng, Y., Xu, J., Yu, B., Song, H., & Dong, J. (2020). 'Decolorization and detoxification of triphenylmethane dyes by the isolated endophytic fungus, Bjerkanderaadusta SWUSI4, under non-nutritive conditions.' Bioresources and Bioprocessing, 7, 1–12. [CrossRef]

Garvasis, J., Prasad, A. R., Shamsheera, K. O., Jaseela, P. K., & Joseph, A. (2020). 'Efficient removal of Congo red from aqueous solutions using phytogenic aluminumsulfate nano coagulant.' Materials Chemistry and Physics, 251, 123040. [CrossRef]

Georgiou, D., Metallinou, C., Aivasidis, A., Voudrias, E., & Gimouhopoulos, K. (n.d.). Decolorization of Azo-Reactive Dyes and Cotton-Textile Wastewater Using Anaerobic Digestion and Acetate-Consuming Bacteria. Biochemical Engineering Journal, 19, 75.

Ghalebizade, M., & Ayati, B. (2020). 'Investigating electrode arrangement and anode role on dye removal efficiency of electro-peroxone as an environmentally friendly technology.' Separation and Purification Technology, 251, 117350. [CrossRef]

Ghosh, S.K., Saha, P.D., & Francesco Di, M. (Eds.). (2020). Recent Trends in Waste Water Treatment and Water Resource Management. Springer Nature Singapore Pvt. Ltd. Springer, Singapore.

Guo, G., Hao, J., Tian, F., Liu, C., Ding, K., Xu, J., Zhou, W., & Guan, Z. (2020). 'Decolorization and detoxification of azo dye by haloalkaliphilic bacterial consortium: Systematic investigations of performance, pathway, and metagenome.' Ecotoxicology and Environmental Safety, 204. [CrossRef]

Habeeb Mohamed, V.B., Arunprasath, R., & Purusothaman, G. (2020). 'Biological treatment of azo dyes on effluent by Neurospora sp isolated and adopted from dye contaminated site.' Journal of The Textile Institute, 111, 1239–1245. [CrossRef]

Hameed, B.B., & Ismail, Z.Z. (2020). 'Biodegradation of reactive yellow dye using mixed cells immobilized in different biocarriers by sequential anaerobic/aerobic biotreatment: Experimental and modelling study.' Environmental Technology, 1–20. [CrossRef] [PubMed]

Hameed, B.B., & Ismail, Z.Z. (2020). 'New application of Orchis mascula as a biocarrier for immobilization of mixed cells for biodegradation and detoxification of reactive azo dyes.' Environmental Science and Pollution Research, 27, 38732–38744. [CrossRef] [PubMed]

Han, S., Han, W., Chen, J., Sun, Y., Dai, M., & Zhao, G. (2020). 'Bioremediation of malachite green by cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene.' Applied Microbiology and Biotechnology, 104, 3193–3204. [CrossRef]

He, Z., Liang, R., Zhou, C., Yan, G., & Wu, L. (2021). 'Carbon quantum dots (CQDs)/noble metal co-decorated MIL-53(Fe) as difunctional photocatalysts for the simultaneous removal of Cr(VI) and dyes.' Separation and Purification Technology, 255, 117725. [CrossRef]

Hihara, T., Okada, Y., Morita, Z. (2002). 'Photo-oxidation and -reduction of vat dyes on water-swollen cellulose and their lightfastness on dry cellulose'. *Dye. Pigment.*, 53. [Online] Available at: http://dx.doi.org/10.1016/S0143-7208(02)00017-7.

Hovers, E., Ilani, S., BarYosef, O., & Vandermeersch, B. (2003). An early case of color symbolism: ochre use by modern humans in Qafzeh Cave. Current Anthropology, 44(4), 491-522.

Hui, J., Pestana, C.J., Caux, M., Gunaratne, H.Q.N., Edwards, C., Robertson, P.K.J., Lawton, L.A., & Irvine, J.T.S. (2021). 'Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light.' Journal of Photochemistry and Photobiology A: Chemistry, 405, 112935. [CrossRef]

Hussein, F.H. (2013). Chemical properties of treated textile dyeing wastewater. Asian J. Chem., 25, 9393–9400.

Jiao, Y., Ma, L., Tian, Y., & Zhou, M. (2020). 'A flow-through electro-Fenton process using a modified activated carbon fiber cathode for orange II removal.' Chemosphere, 252, 126483. [CrossRef]

Jensen, L. B. (1963). Royal purple of Tyre. Journal of Near Eastern Studies, 22(2), 104-118.

Karcher, S., Kornmuller, A., and Jekel, M. (2001). 'Screening of Commercial Sorbents for the Removal of Reactive Dyes.' Dyes and Pigments, 51, p. 111.

Karimifard, S., Alavi Moghaddam, M. R., 2018. 'Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review.' *Science of the Total Environment*, 640-641, pp. 772-797.

Khan, S.A., Mehmood, S., Nabeela, Iqbal, A., & Hamayun, M. (2020). 'Industrial polluted soil borne fungi decolorize the recalcitrant azo dyes Synozol red HF–6BN and Synozol black B.' Ecotoxicology and Environmental Safety, 206, 111381. [CrossRef]

Khandare, R. V., and Govindwar, S. P., 2015. 'Phytoremediation of textile dyes and effluents: Current scenario and future prospects.' *Biotechnology Advances*, 33, pp. 1697-1714.

Khataee, A., Fazli, A., Zakeri, F., & Joo, S. W. (2020). 'Synthesis of a high-performance Z-scheme 2D/2D WO3@CoFe-LDH nanocomposite for the synchronic degradation of the mixture azo dyes by the sonocatalytic ozonation process.' Journal of Industrial and Engineering Chemistry, 89, 301–315. [CrossRef]

Khatri, A., White, M., Padhye, R., Momin, N.H. (2014a). 'The use of reflectance measurements in the determination of diffusion of reactive dyes into cellulosic fiber'. *Color Res. Appl.*, 39. [Online] Available at: http://dx.doi.org/10.1002/col.21764.

Knapp, J. S., & Newby, P. S. (n.d.). The Microbiological Decolorization of an Industrial Effluent Containing a Diazo-Linked Chromophore. Water Research, 29, 1807.

Kristianto, H., Tanuarto, M. Y., Prasetyo, S., & Sugih, A. K. (2020). 'Magnetically assisted coagulation using iron oxide nanoparticles-Leucaena leucocephala seeds’ extract to treat synthetic Congo red wastewater.' International Journal of Environmental Science and Technology, 17, pp. 3561–3570. [CrossRef]

Kumar, J.E., Mulai, T., Kharmawphlang, W., Sharan, R.N., & Sahoo, M.K. (2020). 'Decolourisation, mineralisation and detoxification of a mixture of azo dyes using Fenton and Fenton-type advanced oxidation processes.' Chemical Papers, 74, 3145–3159. [CrossRef]

Kumar, V., Chandra, R., Thakur, I. S., Saxena, G., and Shah, M. P. (2020). 'Recent Advances in Physicochemical and Biological Treatment Approaches for Distillery Wastewater.' In: Shah M., Banerjee A. (eds) Combined Application of Physico Chemical and Microbiological Processes for Industrial Effluent Treatment Plant. Springer, Singapore, pp. 79-118.

Lade, H. S., Waghmode, T. R., Kadam, A. A., & Govindwar, S. P. (2012). Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. International Biodeterioration & Biodegradation, 72, 94-107.

Laftani, Y., Chatib, B., Boussaoud, A., El Makhfouk, M., Hachkar, M., & Khayar, M. (2019). 'Optimization of diazo dye disappearance by the UV/H2O2 process using the Box–Behnken design.' Water Science and Technology, 80, 1731–1739. [CrossRef]

Laraib, Q., Shafique, M., Jabeen, N., Naz, S.A., Nawaz, H.R., Solangi, B., Zubair, A., & Sohail, M. (2020). 'Luffa cylindrica immobilized with Aspergillus terreus QMS-1: An efficient and cost-effective strategy for the removal of congo red using a stirred tank reactor.' Polish Journal of Microbiology, 69, 193–203. [CrossRef]

Lorimer, J.P., Mason, T.J., Plattes, M., Phull, S.S., Walton, D.J. (2001). 'Degradation of dye effluent'. In: *Pure and Applied Chemistry*. [Online] Available at: http://dx.doi.org/10.1351/pac200173121957.

Louati, I., Elloumi-Mseddi, J., Cheikhrouhou, W., Hadrich, B., Nasri, M., Aifa, S., Woodward, S., &Mechichi, T. (2020). 'Simultaneous cleanup of Reactive Black 5 and cadmium by a desert soil bacterium.' Ecotoxicology and Environmental Safety, 190, 110103. [CrossRef]

Lu, J., Chen, Z., Ayele, B. A., Liu, X., & Chen, Q. (2020). 'Electrocatalytic activities of engineered carbonaceous cathodes for the generation of hydrogen peroxide and the oxidation of recalcitrant reactive dye.' Journal of Electroanalytical Chemistry, 878, 114579. [CrossRef]

Mahajan, P., & Kaushal, J. (2020). 'Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: Kinetic and equilibrium studies.' Environmental Science and Pollution Research, 27, 26406–26418. [CrossRef]

Márquez, A.A., Sirés, I., Brillas, E., & Nava, J.L. (2020). 'Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode.' Chemosphere, 259, 127466. [CrossRef] [PubMed]

Maruthanayagam, A., Mani, P., Kaliappan, K., and Chinnappan, S. (2020). 'In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1.' Water, Air, Soil Pollution, 231, pp. 1–21.

Mateus, G. A. P., dos Santos, T. R. T., Sanches, I. S., Silva, M. F., de Andrade, M. B., Paludo, M. P., Gomes, R. G., & Bergamasco, R. (2020). 'Evaluation of a magnetic coagulant based on Fe3O4 nanoparticles and Moringa oleifera extract on tartrazine removal: Coagulation-adsorption and kinetics studies.' Environmental Technology, 41, pp. 1648–1663. [CrossRef]

McEldowney, S., Hardman, D. J., & Waite, S. (1993). Pollution: ecology and biotreatment. Longman Scientific & Technical.

Mehrjo, F., Pourkhabbaz, A., & Shahbazi, A. (2021). 'PMO synthesized and functionalized by p-phenylenediamine as a new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye, heavy metal, and salts from wastewater.' Chemosphere, 263, 128088. [CrossRef] [PubMed]

Meng, J., Xie, Y., Gu, Y. H., Yan, X., Chen, Y., Guo, X. J., & Lang, W. Z. (2021). 'PVDF-CaAlg nanofiltration membranes with dual thin-film composite (TFC) structure and high permeation flux for dye removal.' Separation and Purification Technology, 255, 117739. [CrossRef]

Metcalf, E. (2003). 'Wastewater Engineering: Treatment and Reuse,' 4th ed., McGraw-Hill, New York, USA.

Mohadi, R., Hanafiah, Z., Hermansyah, H., & Zulkifli, H. (2017). Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Science and Technology Indonesia, 2(4), 102-104.

Mohana, S., Shrivastava, S., Divehi, J., & Medawar, D. (2008). Response surface methodology for optimization of medium for decolorization of textile dye Direct black 22 by a novel bacterial consortium. *Bioresource Technology*, 99, 562-569.

Montañez-Barragán, B., Sanz-Martin, J.L., Gutiérrez-Macías, P., Morato-Cerro, A., Rodríguez-Vázquez, R., & Barragán-Huerta, B.E. (2020). 'Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor.' Extremophiles, 20, 239–247. [CrossRef]

Morshed, M.N., Pervez, N., & Behary, N. (2020). 'Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial design.' Scientific Reports, 10, 1–14. [CrossRef]

Muda, K., Aris, A., Salim, M. R., and Ibrahim, Z. (2013). 'Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment.' In Biomass Now-Sustainable Growth and Use. InTech, pp. 231-264.

Muneer, M., Kanjal, M. I., Saeed, M., Javed, T., Haq, A. U., Ud Den, N. Z., Jamal, M. A., Ali, S., & Iqbal, M. (2020). 'High energy radiation-induced degradation of reactive yellow 145 dye: A mechanistic study.' Radiation Physics and Chemistry, 177, 109115. [CrossRef]

Muniyasamy, A., Sivaporul, G., Gopinath, A., Lakshmanan, R., Altaee, A., Achary, A., & Velayudhaperumal Chellam, P. (2020). 'Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process—Ozonation: Experimental & partial derivative modelling approach.' Journal of Environmental Management, 265, 110397.

Murcia, M.D., Gómez, M., Gómez, E., Gomez, J.L., Hidalgo, A.M., Murcia, S., & Campos, D. (2020). 'Comparison of two excilamps and two reactor configurations in the UV-H2O2 removal process of amaranth.' Journal of Water Process Engineering, 33, 101051. [CrossRef]

Mushtaq, F., Zahid, M., Mansha, A., Bhatti, I.A., Mustafa, G., Nasir, S., & Yaseen, M. (2020). 'MnFe2O4/coal fly ash nanocomposite: A novel sunlight-active magnetic photocatalyst for dye degradation.' International Journal of Environmental Science and Technology, 17, 4233–4248. [CrossRef]

Navas, L.E., Carballo, R., Levin, L., & Berretta, M.F. (2020). 'Fast decolorization of azo dyes in alkaline solutions by a thermostable metal-tolerant bacterial laccase and proposed degradation pathways.' Extremophiles, 24, 705–719. [CrossRef]

Nawaz, H., Umar, M., Ullah, A., Razzaq, H., Zia, K. M., & Liu, X. (2021). 'Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with Polyaniline-Graphene oxide nano fillers for treatment of textile effluents.' Journal of Hazardous Materials, 403, 123587. [CrossRef]

Nguyen, T.H., Watari, T., Hatamoto, M., Sutani, D., Setiadi, T., & Yamaguchi, T. (2020). 'Evaluation of a combined anaerobic baffled reactor–downflow hanging sponge biosystem for treatment of synthetic dyeing wastewater.' Environmental Technology & Innovation, 19, 100913. [CrossRef]

Noman, E., Al-Gheethi, A., Talip, B.A., Mohamed, R., & Kassim, A.H. (2020). 'Decolourization of Dye Wastewater by A Malaysian isolate of Aspergillus iizukae 605EAN Strain: A Biokinetic, Mechanism and Microstructure Study.' International Journal of Environmental Analytical Chemistry, 100, 1–24. [CrossRef]

Nwanji, O.L., Omorogie, M.O., Olowoyo, J.O., & Babalola, J.O. (2020). 'Remediation of industrial dye by Fenton-activated biogenic waste.' Surface and Interfaces, 20, 100555. [CrossRef]

O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenço, N. D., Pinheiro, H. M., & Delée, W. (1999). Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(11), 1009-1018.

Ong, C., Lee, K., & Chang, Y. (2020). 'Biodegradation of mono azo dye-Reactive Orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic REACT sequencing batch moving bed biofilm reactor.' Journal of Water Process Engineering, 36, 101268. [CrossRef]

Oyebamiji, O.O., Boeing, W.J., Holguin, F.O., Ilori, O., & Amund, O. (2019). 'Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances.' Bioresource Technology Reports, 7, 100247. [CrossRef]

Özyonar, F., Gökku¸s, Ö., & Sabuni, M. (2020). 'Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation.' Chemosphere, 258, 127325. [CrossRef]

Padhiyar, H., Thanki, A., Kumar Singh, N., Pandey, S., Yadav, M., & Chand Yadav, T. (2020). 'Parametric and kinetic investigations on segregated and mixed textile effluent streams using Moringa oleifera seed powders of different sizes.' Journal of Water Process Engineering, 34, 101159. [CrossRef]

Pandey, K., Saha, P., & Rao, K.V.B. (2020). 'A study on the utility of immobilized cells of indigenous bacteria for the biodegradation of reactive azo dyes.' Preparative Biochemistry & Biotechnology, 50, 317–329. [CrossRef] [PubMed]

Paz, A., Carballo, J., Pérez, M. J., & Domínguez, J. M. (2017). Biological treatment of model dyes and textile wastewaters. Chemosphere, 181, 168-177.

Phalakornkule, C., Suandokmai, T., & Petchakan, S. (2020). 'A solar-powered direct current electrocoagulation system with hydrogen recovery for wastewater treatment.' Separation Science and Technology, 55, pp. 2353–2361. [CrossRef]

Pugh, T. W., & Cecil, L. G. (2012). The contact period of central Petén, Guatemala in color. Res: Anthropology and Aesthetics, 61(1), 315-329.

Punathil, S., Ghime, D., Mohapatra, T., Thakur, C., & Ghosh, P. (2020). 'Fixed Bed Reactor for Removal of Methylene Blue Dye Using Heterogeneous Fenton Catalyst.' Journal of Hazardous, Toxic, and Radioactive Waste, 24, 5515.

Puteri, R. D., Hadisoebroto, R., & Kusumadewi, R. A. (2020). 'Effects of mixing speed on turbidity and dyes removal from wastewater with tiger shrimp shells as biocoagulant.' International Journal of Science and Technology Research, 9, pp. 2089–2095.

Qaseem, S., Dlamini, D. S., Zikalala, S. A., Tesha, J. M., Husain, M. D., Wang, C., Jiang, Y., Wei, X., Vilakati, G. D., & Li, J. (2020). 'Electro-catalytic membrane anode for dye removal from wastewater.' Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125270. [CrossRef]

Qian, H., Hou, Q., Yu, G., Nie, Y., Bai, C., Bai, X., & Ju, M. (2020). 'Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst.' Journal of Cleaner Production, 273, 123028. [CrossRef]

Radwan, E.K., Abdel-Aty, A.M., El-Wakeel, S.T., Abdel Ghafar, H.H. (2020). 'Bioremediation of potentially toxic metal and reactive dye-contaminated water by pristine and modified Chlorella vulgaris.' Environmental Science and Pollution Research, 27, pp. 21777–21789.

Rai, H. S., Bhattacharyya, M. S., Singh, J., Bansal, T. K., Vats, P., & Banerjee, U. C. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Critical reviews in environmental science and technology, 35(3), 219-238.

Rai, H., Bhattacharya, M., Singh, J., Bansal, T. K., Vats, P., and Banerjee, U. C. (2005). 'Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment.' Critical Reviews in Environmental Science and Technology, 35, p. 219.

Rambabu, K., Bharath, G., Banat, F., & Show, P.L. (2021). 'Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment.' Journal of Hazardous Materials, 402, 123560. [CrossRef] [PubMed]

Reck, I. M., Baptista, A. T. A., Paixão, R. M., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2020). 'Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes.' Environmental Science and Pollution Research, 27, pp. 12192–12201. [CrossRef] [PubMed]

Reddy, S., & Osborne, J.W. (2020). 'Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study.' Water Environment Research, 92, 1230–1241. [CrossRef]

Robert, E. (2017). The role of the cave in the expression of prehistoric societies. Quaternary International, 432, 59-65.

Robinson, T., McMullan, G., Marchant, R., and Nigam, P. (2001). 'Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative.' Bioresource Technology, 77, p. 247.

Rodrigues, A. R., Seki, C. C., Ramalho, L. S., Argondizo, A., & Silva, A. P. (2020). 'Electrocoagulation in a fixed bed reactor—Color removal in batch and continuous mode.' Separation and Purification Technology, 253, 117481. [CrossRef]

Sadeghi Rad, T., Khataee, A., Pouran, S. R., & Joo, S. W. (2020). 'The key role of free radicals generated from activation of H2O2, S2O8 2− and ozone over chromium/cerium co-doped magnetite nanoparticles.' Separation and Purification Technology, 239, 116538. [CrossRef]

Sanchez, M. (2015). 'Dyeing of denim yarns with non-indigo dyes'. In: *Denim: Manufacture, Finishing and Applications*. [Online] Available at: http://dx.doi.org/10.1016/B978-0-85709-843-6.00005-6.

Saratale, G. D., Bhosale, S. K., Kalme, S. D., and Govindwar, S. P. (2007a). 'Biodegradation of Kerosene in Aspergillus ochraceus (NCIM 1146).' Journal of Basic Microbiology, 47, p. 400.

Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (n.d.). Ecofriendly Decolorization and Degradation of Reactive Green 19A Using Micrococcus glutamicus NCIM2168. Bioresource Technology, 110, 3897.

Saxena G, Bharagava RN. (2017). Organic and inorganic pollutants in industrial wastes: ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN, editor. Environmental pollutants and their bioremediation approaches. Uttar Pradesh, India: CRC Press, p. 23–56. https://doi.org/10.1201/9781315173351-3.

Saxena, S., & Raja, A. S. M. (2014). Natural dyes: sources, chemistry, application and sustainability issues. In Roadmap to sustainable textiles and clothing: eco-friendly raw materials, technologies, and processing methods (pp. 37-80). Singapore: Springer Singapore.

Setayesh, S.R., Nazari, P., & Maghbool, R. (2020). 'Engineered FeVO4/CeO2 nanocomposite as a two-way superior electro-Fenton catalyst for model and real wastewater treatment.' Journal of Environmental Science, 97, 110–119. [CrossRef] [PubMed]

Sharma, J., Sharma, S., & Soni, V. (2021). 'Classification and impact of synthetic textile dyes on Aquatic Flora: A review'. *Regional Studies in Marine Science*, 45, 101802. [Online] Available at: https://doi.org/10.1016/j.rsma.2021.101802.

Shi, J., Wang, J., Liang, L., Xu, Z., Chen, Y., Chen, S., Xu, M., Wang, X., & Wang, S. (2021). 'Carbothermal synthesis of biochar-supported metallic silver for enhanced photocatalytic removal of methylene blue and antimicrobial efficacy.' Journal of Hazardous Materials, 401, 123382. [CrossRef] [PubMed]

Shi, Y., Yang, Z., Xing, L., Zhou, J., Ren, J., Ming, L., Hua, Z., Li, X., & Zhang, D. (2021). 'Ethanol as an efficient cosubstrate for the biodegradation of azo dyes by Providencia rettgeri: Mechanistic analysis based on kinetics, pathways, and genomics.' Bioresource Technology, 31, 124117. [CrossRef]

Shoukat, R., Khan, S.J., & Jamal, Y. (2019). 'Hybrid anaerobic-aerobic biological treatment for real textile wastewater.' Journal of Water Process Engineering, 29, 100804. [CrossRef]

Silva, E.D.N., Brasileiro, I.L.O., Madeira, V.S., De Farias, B.A., Ramalho, M.L.A., Rodríguez-Aguado, E., & Rodríguez-Castellón, E. (2020). 'Reusable CuFe2O4-Fe2O3 catalyst synthesis and application for the heterogeneous photo-Fenton degradation of methylene blue in visible light.' Journal of Environmental Chemical Engineering, 8, 104132. [CrossRef]

Sirianuntapiboon, S., Chairattanawan, K., Jungphungsukpanich, S. (2006). 'Some properties of a sequencing batch reactor system for removal of vat dyes'. *Bioresour. Technol.*, 97. [Online] Available at: http://dx.doi.org/10.1016/j.biortech.2005.02.052.

Šlosar?cíková, P., Plachá, D., Malachová, K., Rybková, Z., & Novotný, C. (2020). 'Biodegradation of Reactive Orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides.' Folia Microbiologica, 65, 629–638. [CrossRef]

Sosa-Martínez, J.D., Balagurusamy, N., Montañez, J., Peralta, R.M.R.A., Moreira, R.d.F.P.M., Bracht, A., & Morales-Oyervides, L. (2020). 'Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment.' Journal of Hazardous Materials, 400, 123254.

Subramaniam, S., Sivasubramanian, S., Swaminathan, K., and Lin, F. H. (2009). 'Metabolically Inactive Trichoderma harzianum Mediated Adsorption of Synthetic Dyes: Equilibrium and Kinetic Studies.' Journal of Taiwan Institute of Chemical Engineers, 40, p. 394.

Suhan, M.B.K., Shuchi, S.B., Anis, A., Haque, Z., & Islam, M.S. (2020). 'Comparative degradation study of Remazol Black B dye using electro-coagulation and electro-Fenton processes: Kinetics and cost analysis.' Environmental Nanotechnology, Monitoring & Management, 14, 100335. [CrossRef]

Sun, K., Yuan, D., Liu, Y., Song, Y., Sun, Z., & Liu, R. (2019). 'Study on the efficiency and mechanism of Direct Red 80 dye by conventional ozonation and peroxone (O3/H2O2) treatment.' Separation Science and Technology, 55, 1–9. [CrossRef]

Tan, W., Ai, J., Fan, Y., Liu, X., Xu, Y., Zhang, H., & Huang, Y.H. (2020). 'Enhanced mineralization of Reactive Black 5 by waste iron oxide via the photo-Fenton process.' Research on Chemical Intermediates, 46, 4423–4431. [CrossRef]

Tang, Q., Li, Y., Liu, W., Li, B., & Jin, Y. (2022). One-step synthesis of biomimetic copper–cysteine nanoparticle with excellent laccase-like activity. Journal of Materials Science, 57(22), 10072-10083.

Tang, W., Zhou, B., Xing, K., & Tan, L. (2020). 'Co-enhanced activated sludge system by static magnetic field and two halotolerant yeasts for azo dye treatment.' Water Environment Research, 1–10.

Thanavel, M., Kadam, S.K., Biradar, S.P., Govindwar, S.P., Jeon, B.-H., & Sadasivam, S.K. (2019). 'Combined biological and advanced oxidation process for decolorization of textile dyes.' SN Applied Sciences, 1, 1–16. [CrossRef]

The European Commission. (2003). Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques for the Textiles Industr; The European Commission: Brussels, Belgium, p. 626.

Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222.

Uber, T.M., Buzzo, A.J.d.R., Scaratti, G., Amorim, S.M., Helm, C.V., Maciel, G.M., Peralta, R.A., Moreira, R.d.F.P.M., Bracht, A., & Peralta, R.M. (2020). 'Comparative detoxification of Remazol Rrilliant Blue R by free and immobilized laccase of Oudemansiellacanarii.' Biocatalysis and Biotransformation, 1–12. [CrossRef]

Vandevivere, P. C., Bianchi, R., and Verstraete, W. (1998). 'Treatment and Reuse of Wastewater from the Textile Wet-processing Industry: Review of Emerging Technologies.' Journal of Chemical Technology and Biotechnology, 72, p. 289.

Varjani, S. J., Rana, D. P., Jain, A. K., Bateja, S., and Upasani, V. N. (2015). 'Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from onshore sites of Gujarat, India.' International Biodeterioration & Biodegradation, 103, pp. 116–124.

Varjani, S., & Upasani, V.N. (2019a). Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. Journal of Environmental Management, 245, 358-366.

Varjani, S., & Upasani, V.N. (2019b). Comparing bioremediation approaches for agricultural soil affected with petroleum crude - A case study. Indian Journal of Microbiology, 59(3), 356-364.

Varjani, S., Joshi, R., Srivastava, V. K., Ngo, H. H., and Guo, W. (2019). 'Treatment of wastewater from petroleum industry: current practices and perspectives.' Environmental Science and Pollution Research, 1-9. https://doi.org/10.1007/s11356-019-04725-x.

Varjani, S., Rakholiya, P., Ng, H. Y., You, S., & Teixeira, J. A. (2020). Microbial degradation of dyes: An overview. Bioresource Technology, 314, 123728.

Varjani, S.J., & Upasani, V.N. (2017a). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71-83.

Vatanpour, V., Mousavi Khadem, S. S., Dehqan, A., Al-Naqshabandi, M. A., Ganjali, M. R., Sadegh Hassani, S., Rashid, M. R., Saeb, M. R., & Dizge, N. (2021). 'Efficient removal of dyes and proteins by nitrogen-doped porous graphene blended polyethersulfone nanocomposite membranes.' Chemosphere, 263, 127892. [CrossRef]

Verma, P., & Madamwar, D. (2003). Decolorization of Synthetic Dyes by a Newly Isolated Strain of Serratia maerascens. World Journal of Microbiology and Biotechnology, 19, 615.

Vineh, M.B., Saboury, A.A., Poostchi, A.A., & Ghasemi, A. (2020). 'Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite.' International Journal of Biological Macromolecules, 164, 4403–4414. [CrossRef] [PubMed]

Wang, H., Su, J. Q., Zheng, X. W., Tian, Y., Xiong, X. J., & Zheng, T. L. (2009). Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. International Biodeterioration & Biodegradation, 63(4), 395-399.

Wang, J., Chen, H., Yuan, R., Wang, F., Ma, F., & Zhou, B. (2020). 'Intensified degradation of textile wastewater using a novel treatment of hydrodynamic cavitation with the combination of ozone.' Journal of Environmental Chemical Engineering, 8, 103959. [CrossRef]

Wang, Z., Zhang, Y., Li, K., Sun, Z., & Wang, J. (2020). 'Enhanced mineralization of reactive brilliant red X-3B by UV driven photocatalytic membrane contact ozonation.' Journal of Hazardous Materials, 391, 122194. [CrossRef]

Willet, J., Wetser, K., Vreeburg, J., & Rijnaarts, H. H. (2019). Review of methods to assess sustainability of industrial water use. Water Resources and Industry, 21, 100110.

Wrebiak, J.; Bili ´nska, L.; Pa ´zdzior, K.; Ledakowicz, S. (2014). Biodegradability assessment of wastewater streams from textile dye house (Ocenabiodegradowalno´sciwyodr?ebnionychstrumieni ´scieków z farbiarni). Przegl ?adW?ókienniczy—W?óknoOdziezSk ? óra, 46–49.

Wu, Q., Siddique, M.S., & Yu, W. (2021). 'Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies.' Journal of Hazardous Materials, 401, 123261. [CrossRef]

Xu, L., Sun, K., Wang, F., Zhao, L., Hu, J., Ma, H., & Ding, Z. (2020). 'Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization.' Journal of Environmental Management, 270, 110904. [CrossRef]

Yang, H., Bi, Y., Wang, M., Chen, C., Xu, Z., Chen, K., Zhou, Y., Zhang, J., &Niu, Q. J. (2020). 'β-FeOOH self-supporting electrode for efficient electrochemical anodic oxidation process.' Chemosphere, 261, 127674. [CrossRef]

Yaseen, D.A.; Scholz, M. (2019). Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review; Springer: Berlin/Heidelberg, Germany, Volume 16, ISBN 0123456789.

Yin, Q., Zhou, G., Peng, C., Zhang, Y., Kües, U., Liu, J., Xiao, Y., & Fang, Z. (2019). 'The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization.' AMB Express, 9, 1–13. [CrossRef]

Zahrani, A.A., & Ayati, B. (2020). 'Improving Fe-based heterogeneous Electro-Fenton nano-catalyst using transition metals in a novel orbiting electrodes reactor.' Chemosphere, 256, 127049. [CrossRef]

Zeng, H., Yu, Z., Shao, L., Li, X., Zhu, M., Liu, Y., Feng, X., & Zhu, X. (2021). 'A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets.' Chemical Engineering Journal, 403, 126281. [CrossRef]

Zhang, F., Yediler, A., Liang, X., & Kettrup, A. (2004). Effects of Dye Additives on the Ozonation Process and Oxidation By-Products: A Comparative Study Using Hydrolyzed CI Reactive Red 120. Dyes and Pigments, 60, 1.

Zhang, M. Y., Wang, X. P., Lin, R., Liu, Y., Chen, F. S., Cui, L. S., Meng, X. M., & Hou, J. (2021). Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal. Journal of Membrane Science, 618, 118630. [CrossRef]

Zhang, S., Ma, W., Ju, B., Dang, N., Zhang, M., Wu, S., & Yang, J. (2005). Continuous dyeing of cationised cotton with reactive dyes. Coloration Technology, 121(4), 183-186.

Zhang, S., Zhong, L., Wang, J., Tang, A., & Yang, H. (2021). Porous carbon-based MgAlF5•1.5H2O composites derived from carbon-coated clay presenting super high adsorption capacity for Congo Red. Chemical Engineering Journal, 406, 126784.

 Zhang, X., Jia, X., Duan, P., Xia, R., Zhang, N., Cheng, B., Wang, Z., & Zhang, Y. (2020). V2O5/P-g-C3N4 Z-scheme enhanced heterogeneous photocatalytic removal of methyl orange from water under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, 125580. [CrossRef]

Zhao, J., Wu, Q.X., Cheng, X.D., Su, T., Wang, X.H., Zhang, W.N., Lu, Y.M., & Chen, Y. (2020). 'Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus.' Frontiers of Chemical Science and Engineering, 1–16. [CrossRef]

Zhou, S., Fu, Z., Xia, L., Mao, Y., Zhao, W., Wang, A., Zhang, C., Ding, C., and Xu, W. (2021). 'In situ synthesis of ternary hybrid nanocomposites on natural Juncus effusus fiber for adsorption and photodegradation of organic dyes.' Separation and Purification Technology, 255, 117671.

Zhu, Y., Wang, W., Ni, J., & Hu, B. (2020). 'Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater.' Chemosphere, 246, 125753. [CrossRef]

Zhuang, H., Shi, J., Shan, S., Ping, L., & Zhang, C. (2020). 'Enhanced anaerobic treatment of azo dye wastewater via direct interspecies electron transfer with Fe3O4/sludge carbon.' International Journal of Hydrogen Energy, 45, 28476–28487. [CrossRef]

Zinatloo-Ajabshir, S., Salavati-Niasari, M. (2016). 'Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies'. *J. Mol. Liq.*, 216. [Online] Available at: http://dx.doi.org/10.1016/j.molliq.2016.01.062.  


Download this article as Download

How to cite this article:

Aishwarya Bharucha, Sumaiya A. Shaikh and Arti Gaur. 2024. A Review on Biodegradation of Toxic Dyes of South Gujarat, India.Int.J.Curr.Microbiol.App.Sci. 13(3): 78-101. doi: https://doi.org/10.20546/ijcmas.2024.1303.007
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations