Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:2, February, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(2): 119-128
DOI: https://doi.org/10.20546/ijcmas.2024.1302.017


Molecular Characterization and Plasmid Profile of Antibiotics Resistant Genes in Staphylococcus aureus and Pseudomonas aeruginosa from Clinical Specimens
Victor Kasi Robinson*, M. Okpokiri, F. O. Osakuade and S. A. Wemedo
Department of Microbiology, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt,
Rivers State, Nigeria, Department of Microbiology, University of Port Harcourt, Choba, Nigeria
*Corresponding author
Abstract:

One of the global health challenges is the antibiotic-resistant pattern exhibited by Staphylococcus aureus and Pseudomonas aeruginosa. This study aimed to characterize S. aureus and P. aeruginosa from clinical specimens using molecular methods and to carry out plasmid profiles of antibiotic-resistant genes. Twenty isolates comprised of 10 S. aureus and 10 P. aeruginosa isolates from clinical specimens which exhibited multi-drug resistance were collected from the Department of Microbiology, Rivers State University. Polymerase chain reaction and DNA sequencing were employed to identify the isolates. Additionally, plasmid profiling was conducted to examine the presence of mecA, TEM, CTX-M and NDM-1 genes in the plasmid and the eno gene. Results showed that the 16S rRNA of the isolates showed a 99-100% similarity to the isolates of S. aureus with accession numbers (AF065394.1, NC007795.1, KV829593.1, NZJXHU01000160.1, KV841461.1, CP031670.1, CP031664.1, BX571856.1, AP017922.1 and CP003045.1) and P. aeruginosa (CP104590.1, NR026078.1, MN911415.1, CP007224.1, NZCP041945.1, NSPN01000008.1, NZNIZN01000087.1, KY086497.1, KJ482599.1, and KJ482590.1), respectively. Results of the plasmid profiling showed that 90% of the isolates possessed the blaTem gene, 40% of P. aeruginosa possessed New Delhi metallo-β-lactamase (NDM-1), 80% of both S. aureus and P. aeruginosa possessed the CTX-M gene while 40% of the S. aureus isolates possessed the mecA gene. Results also showed that 55% of all the isolates possessed the eno gene. The identification of plasmid-borne resistant genes emphasizes the need for continued surveillance and control measures to mitigate the spread of antibiotic resistance in healthcare settings.


Keywords: Molecular characterisation, plasmid profiling, antibiotics-resistant genes, P. aeruginosa, S. aureus


References:

Alby, K., and Miller, M. B. (2018). Mechanisms and Detection of Antimicrobial Resistance. Principles and Practice of Pediatric. Infectious Diseases, 1467-1478.e4. https://doi.org/10.1016/B978-0-323-40181-4.00290-5

Al-Zahrani, A., Al-Haj, N., Omer, H. and Al-Judaibi, A. (2014). Impact of Extractsof Marine Macroalgae on Multidrug-Resistant Bacteria. Journal of Microbiology Research, 4, 18-24.

Ali, M. S., and Latif, Z. (2016). Molecular characterization of yeast strains isolated from different sources by restriction fragment length polymorphism. Pakistan Journal of Botany, 48(1), 363–370.

Al-Zahrani, A., Al-Judaibi, E., Omar, H. and Al-Judaibi, A. (2017). Effects of Biochemical and Molecular Inhibitors of Plant Extracts on Pathogenic Bacteria. Journal of Biosciences and Medicines, 5, 44-55. https://doi.org/10.4236/jbm.2017.55005

Amirkamali, S., Naserpour-Farivar, T., Azarhoosh, K., & Peymani, A. (2017). Distribution of the bla OXA, bla VEB-1, and bla GES-1 genes and resistance patterns of ESBL-producing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin, Iran. Revista da Sociedade Brasileira de Medicina Tropical, 50(3), 315–320 https://doi.org/10.1590/0037-8682-0478-2016

Ansari, S., Jha, R. K., Mishra, S. K., Tiwari, B. R. and Asaad, A. M. (2019). Recent advances in Staphylococcus aureus infection: focus on vaccine development. Infection and Drug Resistance, 12, 1243–1255. https://doi.org/10.2147/IDR.S175014

Dos Santos, L. D. R, Dos Santos, A. E. S., Cera´volo, I. P., Figueiredo, F. J. B. and Dias-Souza, M. V. (2018). Antibiofilm activity of black tea leaf extract, its cytotoxicity and interference on the activity of antimicrobial drugs. Biointerface Research in Applied Chemistry, 8, 3565–3569

Ettu, A. O., Oladapo, B. A., and Oduyebo, O. O. (2021). Prevalence of carbapenemase production in Pseudomonas aeruginosa isolates causing clinical infections in Lagos University Teaching Hospital, Nigeria. African Journal of Clinical and Experimental Microbiology, 22(4), 498–503. https://dx.doi.org/10.4314/ajcem.v22i4.10

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783-791. https://doi.org/10.2307/2408678

Fernández-espinar, M. T., Llopis, S., Querol, A., and Ferna, M. T. (2011). Molecular Identification and Characterization of Wine Yeasts. In Molecular Wine Microbiology; Carrascosa, A.V., Munoz, R., Gonzalez, R., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA. 111–141.

Fernando, B. J. U., Antonio, M. O. B., De Guzman, K. M. A., Gatbonton, J. C. Y., Vendivil, S. T., Tiongco, R. E. G., and Tesalona, S. D. (2021). The Prevalence of blaNDM-1 in Clinical Isolates of Carbapenem-resistant?Pseudomonas aeruginosa: A Systematic Review. SciMedicine Journal, 3(4), 387–398. https://doi.org/10.28991/SciMedJ-2021-0304-9

Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. and Galdiero, M. (2015) Silver Nano-particles as Potential Antibacterial Agents. Molecules, 20 (5), 8856-8874. https://doi.org/10.3390/molecules20058856

Giamarellou, H., Galani, L., Baziaka, F. and Karaiskos, I. (2013) Effectiveness of a Double-Carbapenem Regimen for Infections in Humans Due to Carbapenemase-Producing Pandrug-Resistant Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 5, 2388-2390. https://doi.org/10.1128/AAC.02399-12

Heilmann, C., Ziebuhr, W. and Becker, K. (2019). Are coagulase-negative staphylococci virulent? Clinical Microbiology and Infection, 25, 1071–1080. https://doi.org/10.1016/j.cmi.2018.11.012

Humphreys, H. (2012). Staphylococcus: Skin infections; osteomyelitis; bloodstream infection; food poisoning; foreign body infections; MRSA, Editor(s): David Greenwood, Mike Barer, Richard Slack, Will Irving, Medical Microbiology (Eighteenth Edition), Churchill Livingstone,176-182.

Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism, (pp. 21-132) Academic Press, New York. http://dx.doi.org/10.1016/B978-1-4832-3211-9.50009-7

Kazmierczak, K. M, Rabine, S., Hackel, M., McLaughlin, R. E., Biedenbach, D. J. and Bouchillon S. K. (2016). Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents Chemotherapy, 60 (2), 1067–1078. https://doi.org/10.1128/AAC.02379-15

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012) Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology and Infection, 18, 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Mayers, D. L., Sobel, J. D., Ouellette, M. and Kaye, K. S. (2017). Antimicrobial Drug Resistance. Mechanism of Drug Resistance. Springer International Publishing, 1101 https://doi.org/10.1007/978-3-319-46718-4

Miller, L. S., Fowler, V. G., Shukla, S. K., Rose, W. E. and Proctor, R. A. (2020). Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiology Reviews, 44, 123–153. https://doi.org/10.1093/femsre/fuz030

Moradali, M. F., Ghods, S. and Rehm, B. H. A. (2017). Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in Cellular and Infection Microbiology, 7, 39. https://doi.org/10.3389/fcimb.2017.00039

Olivares, E., Badel-Berchoux, S., Provot, C., Prévost, G., Bernardi, T. and Jehl, F. (2020). Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Frontiers in Microbiology, 10, 2894.

Palzkill, T. (2012). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277 (1), 91– 104. https://doi.org/10.1111/j.1749-6632.2012.06796.x

Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. and Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advancement, 37 (1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

Park, Y. J., Kim, C. W. and Lee, H. K. (2019). Interactions between Host Immunity and Skin-Colonizing Staphylococci: No Two Siblings Are Alike. International Journal of Molecular Sciences, 20 (3), 718; https://doi.org/10.3390/ijms20030718

Parlet, C. P., Brown, M. M., Horswill, A. R. (2019). Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiology, 27, 497–507. https://doi.org/10.1016/j.tim.2019.01.008

Peterson, G. (2010). Development of microarray and multiplex polymerase chain reaction assays for identification of serovars and virulence genes in Salmonella enterica of human or animal origin. Journal of Vetinary Diagnostic Investiture, 22(6), 559-569. https://doi.org/10.1177/104063871002200410

Pontikis, K., Karaiskos, I., Bastani, S., Dimopoulos, G., Kalogirou, M., Katsiari, M., Oikonomou, A., Poulakou, G., Roilides, E. and Giamarellou, H. (2014) Outcomes of Critically Ill Intensive Care Unit Patients Treated with Fosfomycin for Infections Due to Pandrug-Resistant and Extensively Drug-Resistant Carbapenemase-Producing Gram-Negative Bacteria. Journal of Antimicrobial Agents, 43, 52-59. https://doi.org/10.1016/j.ijantimicag.2013.09.010

Prescott, L. M., Willey, J. M., Sherwood, L. and Woolverton, C. J. (2011). Microbiology New Nature, 47-49.

Robinson, V. K. and Wemedo, S. A. (2019). Molecular Characterization of Indoor air Microorganisms of a Model Primary Molecular Characterization of Indoor air Microorganisms of a Model Primary Health Care. Asian Journal of Biotechnology and Genetic Engineering, 2 (1), 1-9.

Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.

Shanthi, M., Sekar, U., Kamalanathan, A., and Sekar, B. (2014). Detection of New Delhi metallo beta lactamase-1 (NDM-1) carbapenemase in Pseudomonas aeruginosa in a single centre in southern India. The Indian journal of medical research, 140(4), 546–550.

Theuretzbache, U. (2013) Global Antibacterial Resistance: The Never-Ending Story. Journal of Global Antimicrobial Resistance, 1, 63-69. https://doi.org/10.1016/j.jgar.2013.03.010

Walsh, T. R. (2005). The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clinical Microbiology and Infection, 11, 2–9. https://doi.org/10.1111/j.1469-0691.2005.01264.x

Williams, M. R., Costa, S. K., Zaramela, L. S., Khalil, S., Todd, D. A. and Winter, H. L. (2019). Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science Translational Medicine, 11 (490):eaat8329. https://doi.org/10.1126/scitranslmed.aat8329

Yayan, J., Ghebremedhin, B. and Rasche, K. (2015). Antibiotic Resistance of Pseudomonas aeruginosa in pneumonia at a Single University Hospital Center in Germany over a 10-year period. WebberMA, ed. PLoS One, 10 (10), e0139836. https://doi.org/10.1371/journal.pone.0139836

Zeynudin, A., Pritsch, M., Schubert, S., Messerer, M., Liegl, G., Hoelscher, M., Belachew, T., and Wieser, A. (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β -lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infectious Diseases, 18, 524


 


Download this article as Download

How to cite this article:

Victor Kasi Robinson, M. Okpokiri, F. O. Osakuade and Wemedo, S. A. 2024. Molecular Characterization and Plasmid Profile of Antibiotics Resistant Genes in Staphylococcus aureus and Pseudomonas aeruginosa from Clinical Specimens.Int.J.Curr.Microbiol.App.Sci. 13(2): 119-128. doi: https://doi.org/10.20546/ijcmas.2024.1302.017
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations