Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:2, February, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(2): 102-114
DOI: https://doi.org/10.20546/ijcmas.2024.1302.015


Microbial Technology Based Sustainable Pigeon Pea Crop Management under Environmental Stress
Department of Industrial Microbiology, Jacob Institute of Biotechnology & Bio-engineering, Sam Higginbotam University of Agriculture Technology and Science, Prayagraj, Uttar Pradesh-211007, India
*Corresponding author
Abstract:

The Pigeon pea (Cajanus cajan), a perennial legume crop belonging to the family Fabaceae, has been affected by multiple abiotic and biotic constraints in recent decades. The Pigeon pea legume provides multiple nutrient source legumes for human foods. Crop productivity worldwide has reduced due to unbeatable alterations and un-rhythmic environmental change. Nutrients, light, agrochemicals, temperature, water, and heavy metals are commonly reported environmental constraints in the last few years that adversely influenced legume Pigeon pea plant health and harvest efficiency worldwide. The excessive application of agrochemicals in agricultural fields poses grave threats to soil fertility and led to land degradation worldwide. Leguminous plants have the remarkable ability to work with special nodule-living bacteria in their roots and to gather or fix atmospheric nitrogen. Through this phenomenal process, inert nitrogen gas is taken from the inexhaustible supply in the air and used by plants to build amino acids and proteins essential to life. Because nitrogen fertiliser is the most expensive input for food production, the biological nitrogen fixation (BNF) approach is a very attractive alternative to expensive nitrogen chemical fertilisers. This review encompasses an in-depth analysis of environmentally friendly disease management practises including integrated pest and disease management approaches, biological control methods, and the use of resistant cultivars. Recent advancements in microbial fertilizer technology have opened new avenues of augmentation in stress agricultural productivity. Thus, in this article, we will explore recent advancements in legume growth that support microbial technology under stress environments.


Keywords: Pigeon pea, environmental stress, crop productivity, nodule, microbial technology


References:

Adenekan M K, Fadimu G J, Odunmbaku L A and Oke E K, (2018). Effect of isolation techniques on the characteristics of Pigeon pea (Cajanus cajan) protein isolates. Food Sci. Nutri. 6, 146-152. https://doi.org/10.1002/fsn3.539

Akande K E, Abubakar M M, Adegbola T A, Bogoro S E, Doma U D (2010). Chemical evaluation of the nutritive quality of pigeon pea (Cajanus cajan (L.) Millsp.). Int. J. Poult. Sci. 9, 63-65. https://doi.org/10.3923/ijps.2010.63.65

Amarteifio J O, Munthali D C, Karikari S K, Morake T K (2002). The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana. Plant Foods Human Nutri. 57,173-177. https://doi.org/10.1023/a:1015248326920

Anjulo M T, Doda M B, Kanido C K (2021). Determination of selected metals and nutritional compositions of pigeon pea (Cajanus cajan) cultivated in wolaita zone, Ethiopia. J. Agric. Chem. Environ.10, 37-56. https://doi.org/10.4236/jacen.2021.101003

Baligar, V C, Fageria, N K, Paiva, A, Silveira, A, de Souza, J O, Lucena, E, Faria, J C, Cabral, R, Pomella, A W V, Jorda, J, Jr (2008). Light intensity effects on growth and nutrient-use efficiency of tropical legume cover crops. in toward agroforestry design: an ecological approach. Advances in Agroforestry; Jose, S., Gordon, A. (Eds.) Springer: Dordrecht, The 4, 67–79. https://doi.org/10.1007/978-1-4020-6572-9_5

Bashir U, Javed S, Shafiq M (2012) Investigation of genetic variability among different isolates of Fusarium solani). African J. Microbiol. Res. 6, 5168-5172. https://doi.org/10.5897/AJMR12.205

Bawadi H A, Bansode R R, Trappy II A, Truax R E, Losso J N (2005). Inhibition of Caco-2 colon, MCF-7, and Hs578T breast, and DU 145-prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett. 218, 153-162. https://doi.org/10.1016/j.canlet.2004.06.021

Biology of Cajanus cajan (Pigeon pea) - ICAR Biosafety Portal Indian Council of Agricultural Research https://biosafety.icar.gov.in

Birajdar A S, Deshmukh A S, Chavhan R L, Kadam U S, (2018). Analysis of genetic diversity of Fusarium udumcausing wilt of pigeon pea. Int. J. Current Microbiol. Appl. Sci. 6, 843-852.

Campos-Vega R, Loarca-Piña G, Oomah B D (2010). Minor components of pulses and their potential impact on human health. Food Research Int. 43, 461-482. https://doi.org/10.1016/j.foodres.2009.09.004

Carberry PS, Ranganathan R, Reddy LJ, Chauhan YS, Robertson MJ (2001). Predicting growth and development of pigeonpea: flowering response to photoperiod. Field Crops Res. 69, 151-162. https://doi.org/10.1016/S0378-4290(00)00138-6.

Choudhary A K, Sultana R, Pratap A, Nadarajan N, Jha U C (2011). Breeding for abiotic stresses in Pigeon pea. J. Food Legumes24,165-74.

Chung H J, Shin D H, Lim S T, (2008). In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int. 41, 579-585. https://doi.org/10.1016/j.foodres.2008.04.006

Duranti M (2006). Grain legume proteins and nutraceutical properties. Fitoterapia 77, 67-82. https://doi.org/10.1016/j.fitote.2005.11.008

Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S (2011). Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea (Cajanus cajan (L.) Millspaugh). BMC Plant Biol. 11, 1-3. https://doi.org/10.1186/1471-2229-11-17.

FAOSTAT (2017). URL: http://www.faostat3.fao.org (Accessed on July 17, 2017).

Fu Y J, Liu W, Zu Y G, Tong M H, Li S M, Yan M M, Efferth T, Luo H (2008) Enzyme assisted extraction of luteolin and apigenin from Pigeon pea Cajanus cajan L. Millsp. leaves. Food Chem 111, 508-512. https://doi.org/10.1016/j.foodchem.2008.04.003

Gandhi V, Priya A, Priya S, Daiya V, Kesari J, Prakash K, Kumar Jha A, Kumar K, Kumar N (2015). Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution1, 287-95. https://doi.org/10.7508/PJ.2015.03.005 

Gandhi1 N, Sridhar J, Pallavi A, Ashwini1k, Vasavi1 K, Ravali M, Naveen L, Shailaja V, Supriya T, Kondaiah B, Maneesha1 K, Soumya U, Kranthi K (2020). Germination, growth, physiological and biochemical response of pigeon pea (Cajanus cajan) under varying concentrations of Copper (Cu), Lead (Pb), Manganese (Mn) and Barium (Ba). Int. J. Res. Rev. 7, 321-347.

Goswami B. K., Pandey RK, Goswami J, Tewari D D (2007). Management of disease complex caused by root-knot nematode and root wilt fungus on pigeon pea through soil organically enriched with Vesicular Arbuscular mycorrhiza, karanj (Pongamia pinnata) oilseed cake, and farmyard manure. J. Environ. Sci. Health42, 899-904. https://doi.org/10.1080/03601230701623456

Hong Y, Zhou Q, Hao Y, Hunag A C (2022) Crafting the plant root metabolome for improved microbe-assisted stress resilience. New Phytol. 234,1945-50. https://doi.org/10.1111/nph.17908

Hrubsa M, Siatka T, Nejmanova I, Vopršalova M, Kujovska Krcmova L, Matousova K, Javorska L, Macakova K, Mercolini L, Remiao F, Matus M, Mladenka P (2022). On Behalf Of The Oemonom. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients14(3):484.

Karajol K and Naik G R (2011). “Seed Germination rate” as a phenotypical marker for the selection of Nacl tolerant cultivars in pigeon pea (Cajanus cajan (L.) Millsp.).World J. Sci. Technol. 1, 01-08.

Krishna G, Reddy P S, Ramteke P W, Bhattacharya P S (2010). Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Plant Cell Rep. 29, 1079-95. https://doi.org/10.1007/s00299-010-0899-4

Kumar D, Sultana R, Kumar R R, Kirti M (2020). Characterization of Pigeon pea genotypes for waterlogging tolerance based on morpho-physiological and molecular traits. Cur. J. Appl. Sci. Technol. 39, 21-33. https://doi.org/10.9734/cjast/2020/v39i1230660

Kumar A, Chaudhary R, Kumar A, Sharma N (2023). Assessment of genetic diversity in pigeon pea (Cajanus cajan) using micro satellite markers. J. Appl. Nat. Sci. 15, 530-37. https://doi.org/10.31018/jans.v15i2.3683 

Kunyanga C, Imungi J, Vellingiri V (2013) Nutritional evaluation of indigenous foods with potential food-based solution to alleviate hunger and malnutrition in Kenya. J App Biosci 67, 5277-5288. https://doi.org/10.4314/jab.v67i0.95049

Lans C (2007). Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J. Ethnobio. Ethnomed. 3, 1-2. https://doi.org/10.1186/1746-4269-3-3

Maisuriai VB, Gohel V, Mehta AN, Patel RR, Chhatpar H S (2008) Biological control of Fusarium wilt of pigeon pea by Pantoea dispersa, a field assessment. 58, 411-419. https://doi.org/10.1007/BF03175536

Marathe S A, Rajalakshmi V, Jamdar S N, Sharma A (2011). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India Food Chem. Toxicol. 49, 2005-2012.   https://doi.org/10.1016/j.fct.2011.04.039

MoEF & CC, 2009. Biology of Cajanus Cajan (Pigeon Pea). Phase II capacity building project on biosafety 1-36.

Mula M G, Saxena K B (2010). Lifting the Level of Awareness on Pigeon pea- A Global Perspective. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 540 pp

Odeny D A (2007). The potential of Pigeon pea (Cajanus cajan (L.) Millsp.) in Africa. In Natural resources forum. Blackwell Publishing Ltd. Oxford, UK. 31, 297-305. https://doi.org/10.1111/j.1477-8947.2007.00157.x

Pal D, Sarkar A, Gain S, Jana S, Mandal S (2011). CNS depressant activities of roots of Coccos nucifera in mice. Acta Pol. Pharm. 68, 249-54.

Pal D., Mishra P., Sachan N., Ghosh A (2011) Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J. Ad. Pharma. Res. 2, 207-214. https://doi.org/10.4103/2231-4040.90874

Rana, J, Tiwari, SC, Jadon, VS, Gupta S (2016). Bio-control of Fusarium wilt ofpigeon pea by isolated bacterial strains. J. Adv.Microbiol. 2, 103-112. https://doi.org/10.5530/jam.2.2.4

Robertson M J, Carberry P S, Chauhan Y S, Ranganathan R, O’leary G J (2001). Predicting growth and development of Pigeon pea: a simulation model. Field Crops Res. 71, 195-210. https://doi.org/10.1016/S0378-4290(01)00160-5

Roy F., Boye J., I., and Simpson B K, (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea, and lentil. Food Res. Int. 43, 432-442. https://doi.org/10.1016/j.foodres.2009.09.002

Sajilata MG, Singhal RS, Kulkarni PR (2006). Resistant starch-a review. Compreh.Rev.Food Sci.Food Saf. 5, 1-7. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x.

Saxena KB (2006). Seed Production Systems in Pigeonpea. Patancheru 502 324,Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.76 pp. ISBN 92-9066-490-8.

SaxenaKB (2008). Genetic improvement of pigeon pea-a review. Tropical Plant Biol. 1, 159-78. https://doi.org/10.1007/s12042-008-9014-1

Saxena K B, Vijaya Kumar R, Sultana R (2010). Quality nutrition through Pigeon pea-a review. Health2, 1335-44. https://doi.org/10.4236/health.2010.211199.

Saxena, K B, Kumar, R V, Saxena, R K, Sharma, M, Srivastava R K, Sultana R., Varshney, R K, Vales, M I Pande, S (2012) Identification of dominant and recessive genes for resistance to Fusarium wilt in Pigeon pea and their implication in breeding hybrids. Euphytica, 188, 221-227. https://doi.org/10.1007/s10681-012-0700-6

Sharma, S (2017). Pre-breeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop Sci. 57, 1132–1144. https://doi.org/10.2135/cropsci2017.01.0033

Silim S N, Gwataa E T, Coeb R, Omanga P A (2007). Response of Pigeon pea genotypes of different maturity duration to temperature and photoperiod in Kenya. African Crop Sci. J. 15, 73- 81. https://doi.org/10.4314/acsj.v15i2.54420

Singh A K, Rai V P, Chand R, Singh R P, Singh M N (2013). Genetic diversity studies and identification of SSR markers associated with Fusarium wilt resistance in cultivated pigeon pea (Cajanus cajan). Indian Academy Sci. 92, 273-280. https://doi.org/10.1007/s12041-013-0266-7

Singh, S. P. 2001. Broadening the genetic base of common bean cultivars. Crop Sci. 41, 1659-1675. https://doi.org/10.2135/cropsci2001.1659

Singh U, Praharaj C S, Singh S S and Singh N P (2016) Biofortification of Food Crops. New Delhi, Springer India.

Singh Y P, Singh S, Singh A K (2019) On farm abiotic stress management in pigeon pea (Cajanus cajan) and its impact on yield, economics and soil properties. Legume Res.-Int. J. 42,190-97. https://doi.org/10.18805/LR-3831.

Sultana R (2010). Can a drowning pigeon pea perform? SA Trends Issue 102, 201-208.

Swapana B (2016). Impact of cadmium on germination and early seedling growth of Cajanus cajan L. Int J Cur Res Rev.8,27-29.

Teugwa C M, Boudjeko T, Tchinda B T, Mejiato P C and Zofou D, (2013). Anti-hyperglycaemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa. BMC Complementary and Alternative Medicine. The official journal of the International Society for Complementary Medicine Research (ISCMR) 13:63. https://doi.org/10.1186/1472-6882-13-63

Trivedi P, Batista B D, Bazany K E, Singh B K (2022). Plant-microbiome interactions under a changing world: responses, consequences and perspectives. New Phytol. 234,1951-1959. https://doi.org/10.1111/nph.18016

Upadhyay B, Dhaker A K, Kumar A (2010). Ethnomedicinal and ethnopharmaco-statistical studies of Eastern Rajasthan, India. J. Ethnopharm. 129, 64-86. https://doi.org/10.1016/j.jep.2010.02.026

Upadhyaya, H D, Reddy, K N, Sastry, D V S S R, Gowda, C L L (2013). The wild gene pool of Pigeon pea at ICRISAT gene bank-status and distribution. Indian J. Plant Genet. Resour. 26, 193–201.

Vardhini S R, Haq O U. 2014, Naturally available antiviral medicinal plants.

Varshney R K, Saxena R K, Upadhyaya H D, Khan A W, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, Kumar V. Whole-genome resequencing of 292 Pigeon pea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics. 2017 Jul 1;49(7):1082-8. https://doi.org/10.1038/ng.3872

Varshney R. K, Kudapa H., Roorkiwal M., Thudi M., Pandey M. K., Saxena R. K., Chamarthi S. K., Mohan S. M., Mallikarjuna N., Upadhyaya H., Gaur P. M., Krishnamurthy L., Saxena K. B., Nigam S. N., Pande S. (2012). Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Bioscience. 37 (5): 811-820. https://doi.org/10.1007/s12038-012-9228-0

Vimal, S. R. and Singh, J. S., 2020. “Microbial services to nurture plant health under stress environments” in Singh, J. S., Vimal, S. R., (Eds.) Microbial Services in Restoration Ecology. Elsevier-USA, 157-179. https://doi.org/10.1016/B978-0-12-819978-7.00011-7

Vimal, S. R., Singh, J. S., Prasad, S. M., 2022. Plant-microbe dynamics: nature-based solutions for sustainable agriculture. Anthr. Sci. 1, 428-443. https://doi.org/10.1007/s44177-023-00043-7

Zhao J., Bayer P. E., Ruperao P., Saxena R. K., Khan A. W., Golicz A. A., Nguyen H. T., Batley J., Edwards D., and Varshney R. K. (2020). Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal. 18: 1946–1954. https://doi.org/10.1111/pbi.13354

Zheng F, Wu H, Zhang R, Li S, He W, Wong F L, Li G, Zhao S, Lam H M. (2016). Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genommics.17:402.https://doi.org/10.1186/s12864-016-2736-9

Download this article as Download

How to cite this article:

Shraddha Singh, Rubina Lawrence and Ebenezer Jeyakumar. 2024. Microbial Technology Based Sustainable Pigeon Pea Crop Management under Environmental Stress.Int.J.Curr.Microbiol.App.Sci. 13(2): 102-114. doi: https://doi.org/10.20546/ijcmas.2024.1302.015
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations