Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2015 - IJCMAS--ICV 2015: 85.95 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2017) [Effective from January 1, 2017]For more details click here
Indexed in



National Academy of Agricultural Sciences (NAAS)
NAAS Score: *5.38 (2017)
[Effective from January 1, 2017]
For more details click here

ICV 2015: 85.95
Index Copernicus ICI Journals Master List 2015 - IJCMAS--ICV 2015: 85.95
For more details click here
journals IJCMAS
See Guidelines to Authors
Current Issues

Original Research Articles

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com / submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2015: 85.95
NAAS RATING 2017: 5.38

Int.J.Curr.Microbiol.App.Sci.2017.6(4): 2037-2047
DOI: https://doi.org/10.20546/ijcmas.2017.604.241


Biofilm Formation of Zinc Solubilizing, Potassium Releasing Bacteria on the Surface of Fungi
Y. Nagaraju*, S. Triveni, R. Subhashreddy and P. Jhansi
Department of Agricultural Microbiology, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad-30, India
*Corresponding author
Abstract:

Attachment of soil bacteria to plant cells is supposedly the very early step required in plant–microbe interactions. Attachment also is an initial step for the formation of microbial biofilms on plant roots. For the rhizobia–legume symbiosis, various mechanisms and diverse surface molecules of both partners have been proposed to mediate in this process. A biofilm is an aggregate of microorganisms in which cells are stuck to each other and/or to biotic/abiotic surface. These adherent cells are frequently embedded within a self-produced matrix of Extracellular Polymeric Substance (EPS) is a polymeric jumble of DNA, proteins and polysaccharides. The high population density achieved in biofilms provides the opportunity to perform enhanced biochemical reactions than that of single isolates and dual cultures. In the present investigation we aimed towards the development of biofilms under in vitro conditions, using a combination of agriculturally important potential microorganisms like zinc solubilizing, potassium releasing bacteria on the fungal hyphosphere. All the isolates were screed for their zinc solubilization as well as potassium releasing capacity along with biochemical characterization. Biofilm formation of zinc solubilizing and potassium releasing isolates has considerably enhanced the release of potassium as well as zinc. Four hyphobacteria has exhibited high potential for solubilization of organic Zn to inorganic Zn as well as potassium (K) released considerably high when biofilm is used.


Keywords: Mango pulp, Mango peel powder (MPP), Nectar, Chemical preservative, Sensory properties.
Download this article as Download

How to cite this article:

Nagaraju, Y., S. Triveni, R. Subhashreddy and Jhansi, P. 2017. Biofilm Formation of Zinc Solubilizing, Potassium Releasing Bacteria on the Surface of FungiInt.J.Curr.Microbiol.App.Sci. 6(4): 2037-2047. doi: https://doi.org/10.20546/ijcmas.2017.604.241